Eligere Touch

- IT NORME DI INSTALLAZIONE, USO E MANUTENZIONE
- **UK** OPERATING INSTRUCTIONS AND MAINTENANCE
- FR NOTICE D'INSTALLATION, EMPLOI ET ENTRETIEN
- ES NORMAS DE INSTALACIÓN, USO Y MANUTENCIÓN
- PR NORMAS DE INSTALAÇÃO, USO E MANUTENÇÃO
- **DE** GEBRAUCHSANWEISUNG

CERTIFICATE OF CONFORMITY

ETATRON D.S. s.p.A.

Head Office

Via dei Ranuncoli, 53 - 00134 ROMA • ITALY
Tel. +39 06 93 49 891 • Fax +39 06 93 43 924
CC.I.A.A. 535990 - Trib. di Velletri 5170/85 • Cod. Fisc. 06632160583
P. Iva 01585941006 • N. Export M/7011798
Company subject to management and coordination of LASATEC S.r.I.

Internet: <u>www.etatronds.com</u> e-mail: <u>info@etatronds.com</u>

AS MANUFACTURER OF CHEMICAL DOSING SYSTEMS

model: **ELIGERE TOUCH** powered from II0Vac to 240Vac

Under our own responsibility we declare conformity in accordance with the following directives, international standards:

2014/30/UE: "Electromagnetic Compatibility" 2014/35/UE: "Low voltage Directive" 2011/65/UE and 2015/863/UE: "ROHS Regulations"

This certificate confirms equipment supplied (E marked and technica1 documentation including operating manual and spare parts manual.

This declaration conforms to the above directive an integral part of the manufacturer operating manual.

p. ETATRON D.S. Eng. LiPolimeno

Technical Office

(IT) DIRETTIVA "RAEE" SUI RIFIUTI DI APPARECCHIATURE ELETTRICHE ED ELETTRONICHE, AGGIORNATA A L'ULTIMA EDIZIONE

Il simbolo sotto riportato indica che il prodotto non può essere smaltito come normale rifiuto urbano. Le Apparecchiature Elettriche ed Elettroniche (AEE) possono contenere materiali nocivi per l'ambiente e la salute e pertanto devono essere oggetto di raccolta differenziata: smaltite quindi presso apposite discariche o riconsegnate al distributore a fronte dell'acquisto di una nuova, di tipo equivalente o facente le stesse funzioni. La normativa sopracitata, alla quale rimandiamo per ulteriori particolari e approfondimenti, prevede sanzioni per lo smaltimento abusivo di detti rifiuti.

(UK) WASTE OF ELECTRICAL AND ELECTRONIC EQUIPMENT DIRECTIVE (WEEE, RAEE in Italy) UP TO LAST EDITION

The marking shown below indicates that the product cannot be disposed of as part of normal household waste. Electrical and Electronic Equipment (EEE) can contain materials harmful to health and the environment, and therefore is subject to separate waste collection: it must be disposed of at appropriate waste collection points or returned to the distributor against purchase of new equipment of similar type or having the same functions. The directive mentioned above, to which make reference for further details, provides for punitive actions in case of illegal disposal of such waste.

(FR) DIRECTIVE "RAEE" MISE À JOUR DE LA DERNIÈRE ÉDITION CONCERNANT LES REBUTS D'APPAREILLAGES ÉLECTRIQUES ET ÉLECTRONIQUES

Le symbole ci-dessous indique que le produit ne pas être éliminé comme un normal déchet urbain. Les Appareillages Électriques et Électroniques (AEE) peuvent contenir des matériaux nocifs pour l'environnement et la santé et doivent donc faire l'objet de collecte différenciée: éliminés donc auprès de décharges prévues à cet effet ou rendus au distributeur pour l'achat d'un nouveau, de type équivalent ou ayant les mêmes fonctions. La réglementation susmentionnée, à laquelle nous vous renvoyons pour les détails et les approfondissements ultérieurs, prévoit des sanctions pour la mise en décharge abusive desdits rebus.

(ES) DIRECTIVA "RAEE" ACTUALIZADO A LA ÚLTIMA EDICIÓN SOBRE RESIDUOS DE APARATOS ELÉCTRICOS Y ELECTRÓ NICOS

El símbolo que se muestra abajo indica que el producto no puede eliminarse como un residuo urbano normal. Los Aparatos Eléctricos y Electrónicos (AEE) pueden contener materiales nocivos para el medio ambiente y la salud y por tanto tienen que ser objeto de recogida selectiva: por consiguiente tienen que eliminarse en vertederos apropiados o entregarse al distribuidor cuando se adquiera uno nuevo, del mismo tipo o con las mismas funciones. La normativa mencionada arriba, a la que remitimos para más detalles y profundizaciones, prevé sanciones por la eliminación clandestina de dichos residuos.

(PR) DIRETRIZ "RAEE" ATUALIZADO À ÚLTIMA EDIÇÃO SOBRE RESÍDUOS DE EQUIPAMENTOS ELÉTRICOS E ELETRÔNICOS

O símbolo referido abaixo indica que o produto não pode ser eliminado como resíduo urbano normal. Os Aparelhos Elétricos e Eletrônicos (AEE) podem conter materiais nocivos ao ambiente e à saúde e, portanto, devem ser objeto de coleta seletiva: eliminados, portanto, através de depósitos apropriados ou pelo reenvio ao distribuidor para a aquisição de um novo, de tipo equivalente ou que realize as mesmas funções. Anormativa referida acima, à qual nos referimos para detalhes complementares e esclarecimentos, prevê sanções no caso de eliminação inadequada de tais resíduos.

(DE) RICHTLINIE "WEEE" AKTUALISIERT AUF DIE LETZTE EDITION ÜBER ELEKTRO- UND ELEKTRONIK-ALTGERÄTE

El símbolo que se muestra abajo indica que el producto no puede eliminarse como un residuo urbano normal. Los Aparatos Eléctricos y Electrónicos (AEE) pueden contener materiales nocivos para el medio ambiente y la salud y por tanto tienen que ser objeto de recogida selectiva: por consiguiente tienen que eliminarse en vertederos apropiados o entregarse al distribuidor cuando se adquiera uno nuevo, del mismo tipo o con las mismas funciones. La normativa mencionada arriba, a la que remitimos para más detalles y profundizaciones, prevé sanciones por la eliminación clandestina de dichos residuos.

INDEX

1.0	USER INFORMATION USER INFORMATION SIGNS	67
2.0	TOUCH SERIES ENCLOSURE, MOUNTING AND COMMISSIONING	68
2.1	OVERALL DIMENSIONS / ENCLOSURE CHARACTERISTICS	69
2.2	2 - ELECTRICAL WIRING CONNECTORS	69
2.3	3 - CONNECTING PH AND RX (ORP) ELECTRODES	69
2.4	4 - CONNECTING MEMBRANE CHLORINE SENSOR	70
2.5	5 - CONNECTING CD CONDUCTIVITY SENSOR	70
2.6	6 - CONNECTING TO MAIN POWER SUPPLY / PARALLEL CONNECTIONS	70
3.0	DISPLAY DESCRIPTION	71
4.0	TERMINAL BOARD ELECTRICAL WIRING	72
5.0	OPERATING MODES GLOSSARY	74
6.0	PROGRAMMING FUNCTIONS	76
7.0	INPUTS / OUTPUTS DIAGRAM FUNCTIONS	77
8.0	INITIAL DISPLAY	78
8.1	1 - SELECTING PROGRAMMING MENU LANGUAGE	79
8.2	2 - DATE AND TIME – REAL TIME CLOCK	80
8.3	3 - SELECTING PROGRAMMING MENU	80
8.4	4 - SELECTING TEMPERATURE VALUE	80
8.5	5 - SELECTING METER 1 AND METER 2 MEASURING PARAMETER METER1	80
8.6	6 - SELECTING METER3 CHLORINE or MEASURING RANGE	81
8.7	7 - SELECTING METER4 CD CONDUCTIVITY PROBE "K" FACTOR	82
9.0	MEASURED PARAMETER SETTINGS > BASIC MENU	82
9.1	1 - MEASURED PARAMETERS METER1 PH (or RX ORP) > BASIC MENU	82
	9.1.1 - ALARM LEVELS PROGRAMMING METER1 PH (or RX Orp)	82
	9.1.2 - CALIBRATING PH ELECTRODE	83
9.2	2 - MEASURED PARAMETERS METER2 RX ORP (or PH) > BASIC MENU	83
	9.2.1 - ALARM LEVELS PROGRAMMING METER2 RX Orp (or PH)	
	9.2.2 - CALIBRATING METER2 RX ORP ELECTRODE	
	3 - MEASURED PARAMETER METER3 CL (CHLORINE)_PPM > BASIC MENU	
	9.3.1 - ALARM LEVELS PROGRAMMING METER3 CHLORINE_PPM	
	9.3.2 - Calibrating METER3 CHLORINE_PPM SENSOR	
	4 - MEASURED PARAMETER METER4 CD CONDUCTIVITY > BASIC MENU	
	9.4.1 - ALARM LEVELS PROGRAMMING METER4 CD CONDUCTIVITY	
	9.4.2 - Calibrating METER4 CD CONDUCTIVITY SENSOR	
	5 - MEASURED PARAMETER TEMPERATURE > BASIC MENU	
10.0	SET POINT PROGRAMMING > BASIC MENU	
	0.3 - Set point3 RX (REDOX ORP) METER2 > BASIC MENU	
	0.4 - Set point4 CI CHLORINE OR PPM MEASUREMENTS METER3 > BASIC MENU	
	0.5 - Set point5 CD CONDUCTIVITY METER4 > BASIC MENU	
11.0	SETTINGS > BASIC MENU	
12.0	MEASURED PARAMETER SETTINGS > EXPERT MENU	
	2.1 - MEASURED PARAMETERS METER1 PH (or RX ORP) > EXPERT MENU	
	12.1.1 - SELECTING MEASURING PARAMETER METER1 PH (or RX Orp)	
	12.1.2 - MEASURE PRIORITY METER1	
	12.1.3 - ALARM LEVELS PROGRAMMING METER1 PH (or RX Orp)	
	12.1.4 - STARTUP DELAY METER1 PH (or RX Orp)	93

	12.1.5 - Calibrating METER1 pH electrode	93
12	.2 - MEASURED PARAMETERS METER2 RX ORP (or PH) > EXPERT MENU	94
	12.2.1 - SELECTING MEASURING PARAMETER METER2 RX Orp (or PH)	94
	12.2.2 - ALARM LEVELS PROGRAMMING METER2 RX Orp (or PH)	94
	12.2.3 - STARTUP DELAY METER2 RX Orp (or PH)	94
	12.2.4 - Calibrating METER2 RX (Orp) electrode	
12	.3 - MEASURED PARAMETER METER3 CL (CHLORINE)_PPM > EXPERT MENU	95
	12.3.1 - MEASURE TYPE METER3 CL (CHLORINE)_PPM RANGE	95
	12.3.2 - ALARM LEVELS PROGRAMMING METER3 CL (CHLORINE)_PPM	96
	12.3.3 - STARTUP DELAY METER3 CL (CHLORINE)_PPM	
	12.3.4 - Calibrating METER3 CL (CHLORINE)_PPM sensor	96
12	4.4 - MEASURED PARAMETER METER4 CD CONDUCTIVITY > EXPERT MENU	97
	12.4.1 - MEASURE TYPE METER4 CD CONDUCTIVITY PROBE "K" FACTOR	
	12.4.2 - TEMPERATURE CORRECTION	98
	12.4.3 - ALARM LEVELS PROGRAMMING METER4 CD CONDUCTIVITY	98
	12.4.4 - STARTUP DELAY METER4 CD CONDUCTIVITY	
	12.4.5- Calibrating METER4 CD CONDUCTIVITY SENSOR	99
	.5 - MEASURED PARAMETER TEMPERATURE > EXPERT MENU	
	12.5.1 - TEMPERATURE > MANUAL COMPENSATION SETTING	
	12.5.2 - TEMPERATURE > AUTOMATIC COMPENSATION	
	12.5.3 - ALARM LEVELS PROGRAMMING TEMPERATURE	
	12.5.4 - STARTUP time TEMPERATURE FUNCTION	
	12.5.5 - Calibrating TEMPERATURE SENSOR	100
13.0	SET POINT PROGRAMMING > EXPERT MENU	
13	.3 - Set point3 RX (REDOX ORP) METER2 > EXPERT MENU	105
	.4 - Set point4 CI CHLORINE OR PPM MEASUREMENTS METER3 > EXPERT MENU	
13	.5 - Set point5 CD CONDUCTIVITY METER3 > EXPERT MENU	110
14.0	4-20mA ANALOG CURRENT OUTPUT FUNCTION SELECTION > EXPERT MENU	112
15.0	AUX OUTPUTS > EXPERT MENU	116
15	.2 - SETTING AUX #1 - #2 - #3 > REMOTE EQUIPMENT	116
15	.3 - SETTING AUX #3 FUNCTIONS	116
17.0	SETTINGS > EXPERT MENU	117
18	.0 – PH & ORP sensors - use and maintenance	119
18	.1 – Chlorine Probe - use and maintenance	119
18	.2- CONDUCTIVITY sensors NOTES	119
18	.3 - TEMPERATURE / CD ALFA FACTOR	119
18	.4 - CONDUCTIVITY sensors maintenance.	119
19.0	LEVEL control probes and dosing tanks installation	120
20.0	Troubleshooting CONTROLLER	121
21.0	controller TECHNICAL CHARACTERISTICS	122

TOUCH SERIES INCLUDES SCREWS AND WALL BRACKETS FOR MOUNTING

TOUCH series is **NOT** provided with sensors, which are available upon request.

Etatron declines any responsibility in case the controller is used with other brand probes and sensors

1.0 USER INFORMATION USER INFORMATION SIGNS

WARNING: ignoring safety information can endanger life or result in serious injury!

CAUTION: ignoring safety information can result in injuries to persons or damage systems or materials!

— **HIGH VOLTAGE:** ignoring this sign can result in death or serious injuries to persons!

NOTE or **INFORMATION SOURCE**

- this symbol "pointing finger" indicates programming steps.
- if no keys are pressed within 60 seconds, controller will display current measurements

Qualified and authorized personnel must carry out any work or repair on the unit: manufacturer declines any responsibility for consequences in case this rule is not complied.

Unqualified personnel should keep away from the plant and/or hazard areas.

The official operator of the system or the plant, when installing the unit, is responsible to fulfil the above rules.

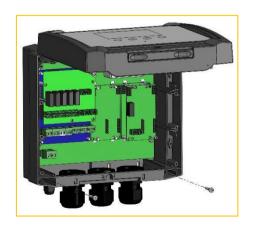
2.0 TOUCH SERIES ENCLOSURE, MOUNTING AND COMMISSIONING

WALL MOUNTING ENCLOSURE P66

Enclosures IP66

ABS, plastic, enclosure with hinged lid UL94 HB (self-extinguish) V0 **264w x 234,2h x 105**

At the bottom of the lid there is a safety lock for closing the housing.



By using the hinged quickrelease catch, the enclosures can easily be closed by handuse a standard screwdriver to open

Once turned the release catch, press with both fingers at the same time to release the lid

- a. Install the unit in a dry place and well away from heat sources; max environmental temperatures 40°C.
- b. Carefully observe regulations in force in the various countries as in regards electrical installations.
- c. Mount the controller on the wall using the screws and dibbles provided with the unit

VERY IMPORTANT NOTE FOR ENCLOSURE: when handling the unit bear in mind not to pull, drag, or mistreat the flat cable connecting the pcb display placed on the lid with main pcb.

2.1 OVERALL DIMENSIONS / ENCLOSURE CHARACTERISTICS

Dimension mm 264w x 144 x 234h

Net weight: 1380 gr Gross weight: 1485 gr

Enclosure: Material – Protection TOUCH

Front controls

Working temperature

Plastic ABS-V0 fire-proof-IP66, hinged front panel with safe lock Polycarbonate adhesive

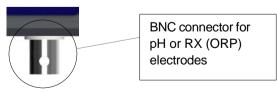
0□50 °C

2.2 - ELECTRICAL WIRING CONNECTORS

TOUCH4 is provided with 16 cable glands plus 2 BNC connectors for various input and output cable wirings. Complying with International electrical wiring rules, we advice not to connect more then one equipment on each pin.

Use for power cable

RS485 or TTL SELECT


Relay outputs, level probe and sensors, and mA out

WHEN OPENING THE LID FOR SERVICING THE UNIT, ALWAYS DISCONNECT POWER SUPPLY !!!

2.3 - CONNECTING PH AND RX (ORP) ELECTRODES

Connect electrode to BNC connector

Electrodes lifetime depends on the instalment and maintenance conditions. The longer the electrode will work more frequent calibrations are required. We recommend using good sample solutions or fresh reliable test kit still in good conditions (not old). For best system results, we recommend ensuring that pH is at required levels.

2.4 - CONNECTING MEMBRANE CHLORINE SENSOR

PLEASE NOTE: TOUCH series offers various chlorine ranges by adapting the controller to the different type of sensors specifics: Membrane type ion selective: **Chlorine** range 0÷2 Cl ppm; 0÷5 Cl ppm; 0÷20 Cl ppm; range 0÷20 Cl ppm (Total chlorine); **Membrane** type for **PPM** measurements such as: Chlorine Dioxide, Bromine, Ozone, Peracetic Acid and others: **CLC** amperometric open chorine cell: range Free Chlorine range CLC 0÷10 Cl ppm (CLC is Systems chlorine open cell);

NOTE: the user must be careful of the sensor in his possession when he **must wire** the probe to the terminal board as shown in **paragraph 4 on page 10÷11**.

Place sensor into off-line holder and connect to Terminal board and check sensor wires configuration before connecting to mains.

SENSOR CABLE WIRINGS: FOR MORE COMMISSIONING DETAILS GO TO PAGE 37:38

CHLORINE SENSOR TERMINAL BOARD				
	NEW membrane Chlorine Open Chlorine OLD membrane Chlo			
sensor cell			sensor	
-	Blue Wire	Not Connected	White Wire	
+	White Wire	Not Connected	Brown Wire	
M	Brown Wire	Blue Wire	Green Wire	
0	Black Wire	Brown Wire	Yellow Wire	

VERY IMPORTANT NOTE: when using sensors for other PPM measurements, wiring parameters may change, therefore, please contact and advice ETATRON SYSTEMS customer service.

If the ion-selective membrane sensors are incorrectly connected and / or have a wrong configuration, they can easily be damaged irreparably

2.5 - CONNECTING CD CONDUCTIVITY SENSOR

NOTE FOR CONDUCTIVITY SENSORS

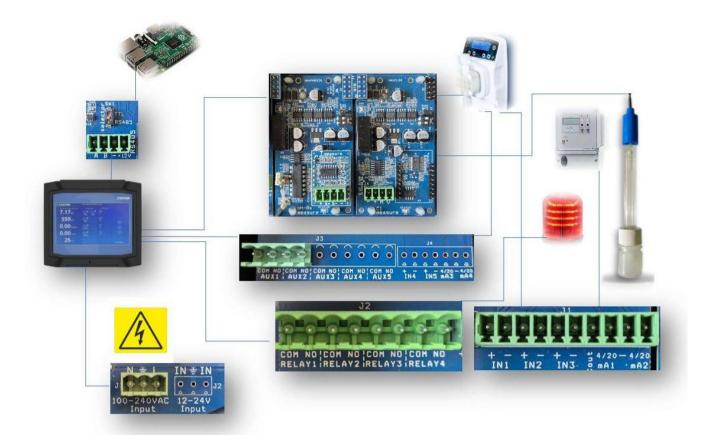
TOUCH CD works with the principle of 2-electrodes conductivity open sensors, Graphite electrode or AISI 316 both with PTFE body. Also available with AISI 316 / PVC body.

FOR CONDUCTIVITY 4/6 WIRES (with internal temperature sensor) SENSORS: due to the various types on the market, in case operator wished to use such sensors, please contact ETATRON service or Local Dealer to get the right configuration for connecting to terminal board. **TOUCH CD is NOT suitable for inductive sensors!**

Disconnect the instrument from the power supply, install the conductivity sensor in the system or in a suitable probe holder. It is recommended to use a new probe or one in good condition. Connect CD sensor to the internal terminal board (page 10).

PLEASE NOTE: TOUCH CD automatically adapt itself to the different probes cell constant "K" characteristic consequently adjusting the various conductivity ranges display resolution, as shown in paragraph **8.5** of this booklet.

IMPORTANT: it is essential that the user knows the probe cell constant supplied by the manufacturer of the probe.


TOUCH CD will show µS values up to 1999 (microSiemens) above this value will automatically change to mS (milli Siemens).

CONDUCTIVITY TERMINAL BOARD				
S +	S + Conductivity Probe (WHITE wire) (RED or WHITE wire)			
+	Conductivity Probe (WHITE/BROWN wire)			
-	Conductivity Probe (BLACK/BROWN wire)			
S-	S - Conductivity Probe (BLACK wire) (WHITE or RED wire)			
	TEMPERATURE TERMINAL BOARD			
+	+ PT100 temperature probe (RED wire)			
S +	S + PT100 temperature probe (BLUE wire)			
S-	S - PT100 temperature probe (GREEN wire)			
-	- PT100 temperature probe (YELLOW wire)			

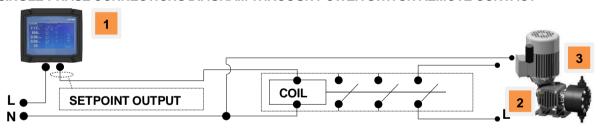
2.6 - CONNECTING TO MAIN POWER SUPPLY/PARALLEL CONNECTIONS

PARALLEL CONNECTIONS: when connecting the unit to main power supply in parallel with other inductive equipment (motors, pumps, blowers, solenoid and motorized valves), these gears must be electrically isolated and with a proper Ground system, to prevent damages from inductive voltages when switching ON-OFF. Try using a power switch to have separate connections via contact relay or relay. When this is not possible, contact ETATRON technical service.

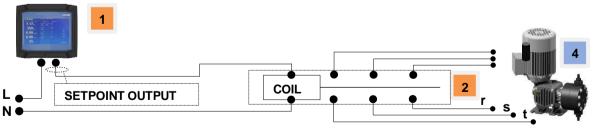
EXAMPLE CONNECTION RELAY EXTERNAL UNITS 1-2-3-4-5 AND AUX1 AUX2 AUX3 ALARM

PLEASE REFER TO PARAGRAPH 4.0 "TERMINAL BOARD ELECTRICAL WIRING" PAGE 10+11

EXAMPLE CONNECTION CONTROLLER-MOTOR DOSING PUMP RELAYS OUT 1-2-3


1 CONTROLLER

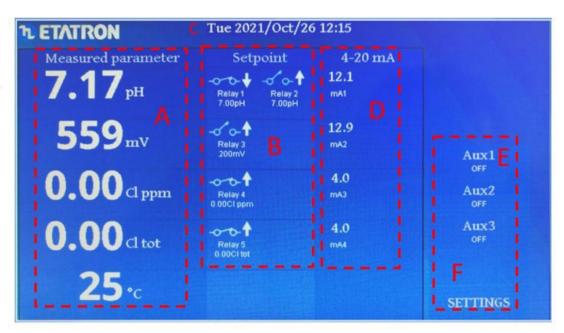
2 REMOTE CONTROL SWITCH 230V MAX 10A


3 SINGLE PHASE MOTOR METERING PUMP 4 TRI-PHASE MOTOR METERING PUMP

L = one phase of mains network N = neutral r - s - t = represent each phase of tri-phase mains system

SINGLE-PHASE CONNECTIONS DIAGRAM THROUGH POWER SWITCH REMOTE CONTACT

THREE-PHASE CONNECTIONS DIAGRAM THROUGH POWER SWITCH REMOTE CONTACT


CAUTION

KEEP IN MIND: unit with universal voltage $100 \Box 250 \text{Vac} \ (\pm 10\%)$ or $9 \Box 24 \text{Vdc}$. If the actual voltage is constantly at the limit (lower or higher), or when spikes are much higher than mentioned range, the unit pcb is electronically protected against Voltage fluctuations; outside the above-mentioned ranges, controller will not work and circuit boards must be

replaced. We **RECOMMEND** using voltage protections, checking system ground and, when connecting in parallel other units, using remote contact switch. A plant not built according to correct electrical rules, without a ground system, with frequent ON/OFF operations, could affect directly the circuit boards. It's also suggested installing a UPS (Uninterruptible Power Supply) to ensure power continuity. A discontinuous voltage with many On/Off operations, could affect pcb's integrity and Data loss.

3.0 DISPLAY DESCRIPTION

When choosing measure type Meter 1 and Meter2 as RX shows mV values, and when choosing measure type meter 3, as ppm it will not show CI but only ppm

Selecting **PT100** sensor display will show temperature readings, if manual it will **no** show of °C readings

A: touch this area to enter the calibration menu of the chosen measure

B: touch this area to enter the setpoint menu (not visualized if using Large digits display status, Expert menu)

C: touch this area to change the current date and time

D: touch this area to enter the 4□20mA menu (only in expert menu)

E: touch this area to enter the Auxiliary outputs menu (only in Expert menu)

F: touch this area to enter the main settings menu

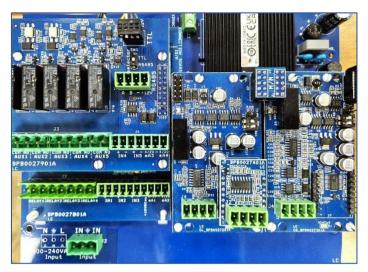
G: touch this area to enter the temperature measured parameters

Once into any programming, touching **ESC** goes back one step, touching **HOME** goes to Main display.

If there are more than one function active, messages appear in a continuous cycle lasting 3 sec. for each item. ALARM or OVERDOSING messages will disappear once measurements are restored according to programmed settings whilst Overdosing icon will remain; to delete activated icons from the display, keep pressing on **ESC**.

When messages appear, temperature status will NOT be shown.

Temperature value: setting Manual temperature mode, the temperature value will correspond only to the one selected. In case PT100 mode has been selected (and such sensor is connected), the temperature value shown will be the actual value of the system, compensation will be automatic. **Selecting MANUAL mode display will not show temperature measurements.**



Error displayed: "NO LINK with meter": the two circuit boards, measuring and I/O, are linked together via RS485 protocol: in this case check the electrical flat cable or the two circuit boards connecting pins alignment; contact immediately ETATRON SYSTEMS service.

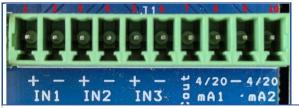
4.0

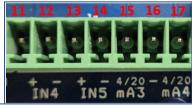
PLEASE NOTE: when working with **Basic menu** the following display functions are **NOT AVAILABLE**: **mA** programming / **AUX** programming / **Temperature setpoint** programming

WHEN OPENING THE LID FOR SERVICING THE UNIT, ALWAYS DISCONNECT POWER SUPPLY !!!

- Unscrew the front panel and carefully open the lid.
- TOUCH series is provided with 2 m cable already wired onto the terminal board; in case user wishes to replace the cable with a longer one, connect the mains to neutral, earth, phase, unit switches **ON**, initially display **quickly** shows latest software review.

• MAINS connect power supply wires to following pins: L (line), N (neutral).




The terminal board is built with special pin for top safety: ensure to twist well the wire ends, use a small screwdriver to press the safety on top of the slot where insert the wire ends and, according International electrical rules, we advice not to connect more then one equipment on each pin.

Relay 1	Pin COM / N.A.	Setpoint 1 – Measure 1 - ON-OFF / timed pulse output relay PWM
Relay 2	Pin COM / N.A.	Setpoint 2 – Measure 1 - ON-OFF / timed pulse output relay PWM
Relay 3	Pin COM / N.A.	Setpoint 3 – Measure 2 - ON-OFF / timed pulse output relay PWM
Relay 4	Pin COM / N.A.	Setpoint 4 – Measure 3 - ON-OFF / timed pulse output relay PWM
AUX 1	Pin COM / N.A.	Setpoint 5 – Measure 4 - ON-OFF / timed pulse output relay PWM
AUX 2	Pin COM / N.A.	AUX1 ON-OFF auxiliary output time programmable
AUX 3	Pin COM / N.A.	AUX2 ON-OFF auxiliary output time programmable
AUX 4	Pin COM / N.A.	AUX3 ON-OFF auxiliary output time programmable
AUX 5	Pin COM / N.O.	ALARM output for operating the external signaling device

Pin 1 + / Pin 2 - IN 1	Digital inputs for tank level switch Measure 1
Pin 3 + / Pin 4 - IN 2	Digital inputs for tank level switch Measure 2
Pin 5 + / Pin 6 - IN 3	Proximity Switch input BLACK + / BLUE - wires
Pin 7 + +12Vdc ou	t Proximity Switch input 12Vdc BROWN wire
Pin 8 / Pin 9 – 4/20mA1	4-20mA output for Measure 1 for mA dosing pump or data device
Pin 9 – / Pin 10 4/20mA2	4-20mA output for Measure 2 for mA dosing pump or data device
Pin 11+ / Pin 12 – IN 4	Digital Inputs for tank Level switch for Measure 3

Pin 13+ / Pin 14 – IN 5	<u> </u>	
Pin 15 / Pin 16 – 4/20	mA3 4-20mA output for dosing pum	p or data device for Measure 3
Pin 16 – / Pin 17 4/2	0mA4 4-20mA output for dosing pum	p or data device for Measure 4
18 19 20 21		Pin 18 (-) = - 12Vdc <i>BLUE</i>
	Chlorine sensor or PPM sensor	Pin 19 (+) = + 12Vdc <i>WHITE</i>
- + M O	Membrane type	Pin 20 (M) = Measurement Chlorine sensor BROWN
- T 11 U		Pin 21 (0) = GROUND BLACK
18 19 20 21		Pin 18 = NO CONNECTION
0 0 0	Chlorine sensor	Pin 19 = NO CONNECTION
- + M O	Open Cell type	Pin 20 = Measurement Chlorine sensor <i>BLUE</i>
- T 11 U		Pin 21 = GROUND BROWN
22 23 24 25		Pin 22 = S+ <i>WHITE</i>
	Conductivity sensor 2 wires	Pin 23 = + WHITE/BROWN
	DO NOT CONNECT BRAIDED WIRE	Pin 24 = - BLACK/BROWN
S+ + - S-		Pin 25 = S- <i>BLACK</i>
25 27 28 22		Pin 26 = + <i>RED</i>
	Temperature probe PT100	Pin 27 = S+ <i>BLUE</i>
	DO NOT CONNECT BRAIDED WIRE	Pin 28 = S- <i>GREEN</i>
+ 5+50		Pin 29 = – <i>YELLOW</i>
SW1		Pin 30 = A <i>ORANGE</i>
RS485	RS485 / TTL connection	Pin 31 = B YELLOW
	For software ETACLOUD with RASPBERRY and installation ask for	Pin 32 = - <i>BLACK</i>
A B -+12V	special manual	Pin 33 = +12V Not connected

KEEP IN MIND: unit with universal voltage $100 \square 250 \text{Vac} \ (\pm 10\%)$ or $9 \square 24 \text{Vdc}$. If the actual voltage is constantly at the limit (lower or higher), or when spikes are much higher than mentioned range, the unit pcb is electronically protected against Voltage fluctuations; outside the above-mentioned ranges, controller will not work and circuit boards must be

replaced. We **RECOMMEND** using voltage protections, checking system ground and, when connecting in parallel other units, using remote contact switch. A plant not built according to correct electrical rules, without a ground system, with frequent ON/OFF operations, could affect directly the circuit boards. It's also suggested installing a UPS (Uninterruptible Power Supply) to ensure power continuity. A discontinuous voltage with many On/Off operations, could affect the pcb's integrity and Data loss.

5.0 OPERATING MODES GLOSSARY

ON-OFF mode

 Unit is provided with ON-OFF mode which will activate (or deactivate in case of reverse mode ON) output relays Constant / ON-OFF dosing pumps mode or other ON-OFF equipment.

BENEFITS: it will work with most of ON-OFF equipment, which are also cost effective.

DISAVANTAGES: due to dosing equipment high output performance rate (frequency for dosing pump and peristaltic dispensers with motor rpm), this will result to a slight different value between actual measurement in the system and what controller shows.

USING EXTRA ON-OFF RELAY OUTPUT

 ON-OFF Relay probably will connect a dosing pump; the free available relays can connect an alarm device (buzzer and light), programming different values then the ones for dosing pumps.

BENEFITS: increase safety measurements ensuring warning in case parameters are out of control.

ACID / ALKALINE - DIRECT / REVERSE DIRECTION MODE

☐ Set-points relays Direction mode are set as default as follow:

Set point 1 / Set point 2 PH or RX (Orp):

- PH: ACID mode meaning that output is active when measured value is higher than set point, connected dispensing unit will
 dose acid chemical.
- **RX:** DIRECT mode meaning that output is active when measured value is lower than set point, connected dispensing unit will dose chlorine (Oxidant).
- RX: REVERSE mode, output is active when measured value is higher than set point, connected dispensing unit will dose chlorine Reducing chemical.

Set point 3 RX (Orp):

- **RX:** DIRECT mode meaning that output is active when measured value is lower than set point, connected dispensing unit will dose chlorine (Oxidant).
- **RX:** REVERSE mode, output is active when measured value is higher than set point, connected dispensing unit will dose chlorine Reducing chemical.

Set point 4 Chlorine or PPM measurements:

- **CL or PPM:** DIRECT mode meaning that output is active when measured value is lower than set point, connected dispensing unit will dose chlorine (Oxidant).
- **CL or PPM:** REVERSE mode, output is active when measured value is higher than set point, connected dispensing unit will dose chlorine Reducing chemical.

Set point 4 CD CONDUCTIVITY measurements:

- DIRECT mode meaning that output is active when measured value is lower than set point. REVERSE mode, output is active when measured value is higher than set point.

User canchange mode duringprogramming or CD (conductivity) cell kostant range (latter using expert menu>Measured Parameters).

ALARM MAX / Min function

□ **Alarm** function allows selecting two points high and low passed which controller will go into alarm. BENEFITS: increase safety measurements ensuring warning in case parameters are out of control.

HYSTERESIS

□ Hysteresis is useful during ON-OFF mode set-point adjustment operations and is used to activate or deactivate output relays when selected hysteresis is reached. Hysteresis is useful when there are too many quick changes around set point, which could damage connected equipment. Increasing Hysteresis will allow moving away from set point according to required value. Example with PH: if selected set point is 7.00 pH and Hysteresis set at 0.05, the two active points are 6.95 pH and 7.05 pH: within this range, set point is OFF and outputs are blocked, outside this range set point is ON (always in accordance with Acid or Alkaline mode). RX (mV), CL/PPM, CD (conduct.) parameters work the same way according to programming settings.

BENEFITS: ensuring good control the systems without stressing connected equipment.

DISAVANTAGES: user must remember that programmed hysteresis is slightly different from required set point.

DELAY

□ **Delay time** blocks relay outputs (max 999 sec. programmable) to ensure that the outputs are active only when the sensors measurements are stable thus allowing the best results in terms of chemical balance.

PWM mode: Pulses Width Modulation / Timed pulses

□ **Timed Pulses** also known as **PWM** "pulses with modulation" time/pause allows proportional mode on each ON-OFF set-point activating corresponding pulses with Start/Stop time cycle variation according to measured value in respect to set-point. **Window Width:** pulses are timed ON and OFF according to the distance from selected set-point, programmable, example with pH parameter: if selected set point is 7.00 pH and measured value is 9.00 pH, **PWM** mode will start after reaching 8.50 pH with

Time/Pause pulses and decreasing the active time while reaching set point value.

Cycle Time: PWM mode cycle 60 seconds (programmable): example set point 7,00 pH, 8.50 pH = active time 60 sec - pause time = 0 sec.; 7.75 pH active time= 30 sec / pause time 30 secand decreasing active time accordingly while reaching set point value. Cycle time depends on many variables such as: distance from injection point to treating system, how fast or slow set point must

react, chemical concentration, etc.... **Active Time MIN** programmable: it sets the minimum time in which PWM is active; it overrules selected settings. Times Pulses Function is adjusted via 3 functions following the formula: Active Time according to selected formula = (measured value – set point) / window width * cycle time. If the result of the formula is < the selected Active Time Min, the latter with overrule the first, example: measured value 8.50 pH - set point 7.00 pH / Window Width 1.50 pH * Cycle time 60 sec = active time 4 sec.

In case user has selected Active time min 5 sec, this will be minimum time of PWM and not 4 sec.

RX (mV), CL/PPM, CD (conductivity) parameters work the same way according to programming settings.

BENEFITS: a proportional function more accurate than ON-OFF mode using simple equipment such as Constant mode dosing pumps and peristaltic dispensers.

DISAVANTAGES: user must be a professional to select the most accurate settings for excellent results.

ANALOG CURRENT OUTPUTS 4÷20 mA

Controller features 4 analog current signal mA outputs. The 4-20mA signal follow pH, RXmV and CL (ppm) or PPM selected settings.

Output mA provides two working mode to select according to the system operating requirements:

- AUX is a programmable function combined to the unit in real time thus driving remote equipment such as data logger, remote equipment such as data logger, PLC or Chart recorders or other equipment suitable to process a remote mA signal. At 4 mA corresponds the minimum pH, RX mV (ORP), CL/PPM, CD (conductivity) levels, at 20 mA corresponds the max measured pH or RX mV (ORP) and CL (ppm) levels; connected equipment will work accordingly.
- **DOSING SETPOINT**: mA output drives dosing pumps or equipment suitable to manage a mA incoming signal. At 4 mA corresponds the minimum pH, RX mV (ORP), CL/PPM, CD (conductivity) levels thus connected dosing pump will work atminimum capacity. At 20 mA corresponds the max measured or RX mV (ORP) and CL (ppm) or PPM levels connected dosing pump will work at max capacity (according to equipment adjustment settings).

BENEFITS: best results because pulses are extremely accurate in relation to measured levels. DISAVANTAGES: user needs a specific dosing pump or other equipment suitable to process a remote mA signal.

OVERDOSING TIME

Over dosing time-out alarm allows to select a period in which set point must be reached. If during this time set point is not reached, controller will block outputs operations including mA outputs (dosing pump), Alarm is ON shown on display and will activate a signalling device connected to alarm relay. BENEFITS: to prevent excess of chemical addition.

MAX DOSING / DOSING CHECK TIME

• These are extra safety functions ensuring that dosing operations are effected within the time selected by the operator. Relays connected to dosing pumps will open accordingly. This function allows no time limit, dosing continuously always in accordance to selected set points or, in case the operator wants to change settings, he can select the number of minutes (up to 999) within the selected hours. **Dosing check time** sets a time period (hours) in which the unit checks the total dosing time effected, example: every 3 hours' unit checks the total dosing time; if the dosing time has exceeded programmed selection, it will not effectuate any dosing until dosing time is restored to original programming.

BENEFITS: to prevent excess of chemical addition not only according the set point but also overruling any kind of the controller set point programming.

REAL TIME CLOCK / START-STOP TIME

• Real time clock allows driving via timer programming Auxiliary outputs, sensors cleaning (open chlorine cell) or any remote equipment for the period selected in the program. Operator can also program the working days and exact time of the unit operations via Start/Stop programming.

AUX OUTPUTS

• Auxiliary outputs control various functions related to remote equipment and dosing pump. Each output can drive remote equipment or devices according to a very accurate programming of minutes/hours/days/weeks.

BENEFITS: this function make this controller a very versatile management unit not only to measure chemical-physical parameters but also for other functions related to the systems where is installed.

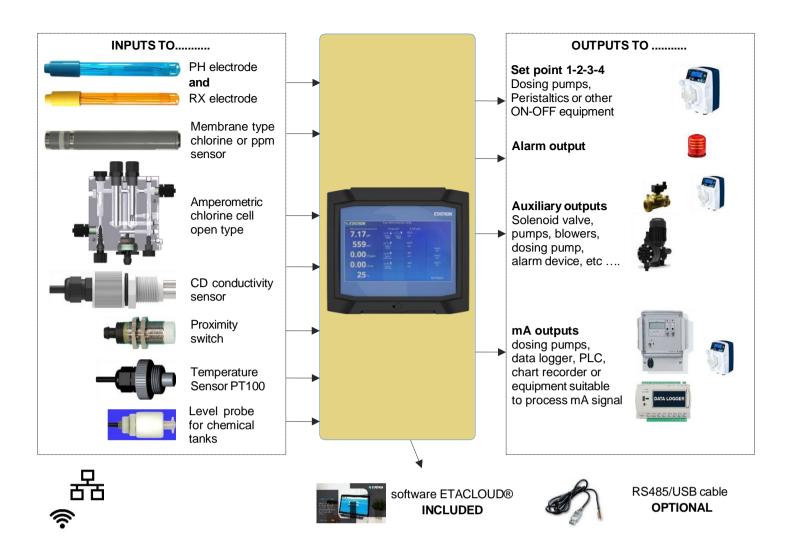
START-UP DELAY

• Start-up Delay time stops the relay outputs when switching ON the unit thus allowing sensors to polarize ensuring correct measurements (programmable).

FLOW SENSOR "PROXIMITY SWITCH" FUNCTION

• Flow Sensor: in case, no water is running through the sensor cell holder (and eventually into the systems), flow sensor (proximity switch) will deactivate all outputs ensuring that no extra chemical is added.

TEMPERATURE


• Manual temperature compensation. 0÷100°C. Selecting **PT100** (latter with temperature sensor) **automatically compensates** temperature / sensor measurements, always giving the exact value against the current temperature. In Manual mode, if user does not select any temperature value, controller will set 25°C value as default, which can be changed. Temperature value is visualised only if using temperature sensor PT100. **NOTE: temperature setpoint is available only if using probe**

ETHERNET / RS485 and WiFi communication control unit with external OR internal module

- The TOUCH series is suitable for remote control via an RS485 expansion card with Modbus protocol using Etacloud® software,
 The control unit connection via RS485/ETHERNET and WiFi allows the operator to connect to the unit via PC, smartphone or
 tablet, and change the programming and visualise settings using Etacloud® software. The unit will send an email once
 reached the alarm level, the overdose settings, or finished the maximum dosing time of the metering pump.
- Etatron features a useful service which will allow the customers to monitor and control from anywhere in the world the controllers installed in any place in the world: ETACLOUD SYSTEM. Upon request, and only with the user written permission, Etatron can share the controllers monitoring ensuring the correct functioning, all in real time (refer to last page).

6.0 PROGRAMMING FUNCTIONS

		3 set-point ON-OFF	Independent setting to activate Constant / ON-OFF mode dosing pumps, peristaltic or ON-OFF equipment.	
	Output Relays 1 - 2 - 3 - 4 - 5 Points Set point Hysteresis Acid - Alkaline pH Direct - Reverse RX/CL PMM/CD PWM Proportional mode with modular pulses Delay on set point	Set point	adjusts set-point value (ON-OFF mode).	
		Hysteresis	It selects a measuring range around set-point value, blocking output relays (ON-OFF mode)	
			It selects output dosing relay dosing direction.	
Set-Points		Proportional time/pause pulses output will activate a Constant / ON-OFF mode dosing pumps, peristaltic or others ON-OFF equipment.		
		Delay on set point	It selects a delay time (999 seconds adjustable) before activating relay output.	
	Relay outputs AUX	Real-Time clock drives remote equipment or devices according to a very accurate programming of minutes/hours/days/weeks		
	Relay Alarm	Alarm min / Alarm Max	Alarm function selects alarm Lowest and Highest level passed which alarm relay will be ON or OFF.	
4÷20mA1 4÷20mA2	AUX mA device	It allows to select pH, RX(Orp), Chlorine / PPM, CD CONDUCTIVITY levels corresponding to min. and max mA output analogical signal.		
4÷20mA3	Dosing setpoint	driving mA dosing pumps or equipm	ent suitable to work with mA signal	
Calibration	Calibration menu for p	H and RX electrodes, Chlorine (Meml	brane or Open cell) or PPM sensors, CD sensor	
	Flow sensor	It activates (ON) or deactivates (OFF) flow sensor (proximity switch) input.		
	Manual temperature	It selects manual temperature compensation. 0÷100°C (Auto-Temp=OFF).		
System Settings	Auto-temperature Compensation		ectrode_sensor thus always measuring the exact ure, function available only with PT100 sensor.	
	RS485/Ethernet WiFi		NET or WiFi control unit, Modbus protocol, Software via pc, smartphone or tablet, also in WiFi	

NOTES FOR PROGRAMMER: try not to press the keys continuously. First, read the manual before programming or have the booklet handy so to be sure to perform a correct selection.

IMPORTANT: if keys are not pressed within 60 seconds, controller will display current measurements.

For rapid advancement, **keep** pressed firmly either one of **◄►** keys

When the controller is turned ON there will be displayed at the bottom the latest software upgrades.

Software is subject to revision without notice.

Controller will get set for measurements and ready to work.

at this point, there could be some here are displayed some other messages status which could be ON due to actual measurements, just go ahead with programming.

Display shows pH, RX (orp) mV, Chlorine or PPM measurements and CD (conductivity) measurements according to initial selections according to the following paragraphs 8.4, 8.5, 8.6 and 8.7. If display shows unwanted programmed settings, due to previously programming, we recommend a reset of the unit (SETTINGS).

INITIAL DISPLAY shows measurements which are random since no calibrations have yet been done.

display will show previously selected programs.

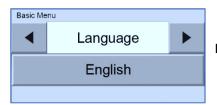
CONTINUOS MEASUREMENT DISPLAY shows when parameter measurements, function status and alarm indications.

When the controller is turned **ON** for **the first time**, there will be displayed a list of all the programming function keys which will not appear in the next switching ON operations.

Large measured value **Digits** are visualized by selecting Display status "Hide" (set point status not visualized, only **SETTINGS** expert menu)

Selecting Meter1 Measure type RX, windows will show RX values Selecting Meter2 Measure type PH, windows will show PH values

Selecting Meter3 Chlorine or PPM range, display shows values for according to selected range


Selecting Meter4 for CD conductivity measurements, display will show µS values up to 1999 (microSiemens) then automatically will change to mS (milli Siemens) above latter value

at this point, there could be some here are displayed some other messages status which could be ON due to actual measurements, just go ahead with programming.

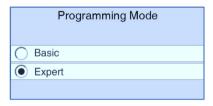
Display shows pH or Redox mV and Chlorine or PPM measurements according to selections that will make selected in following paragraph 8.4 and 8.5. If display shows programmed, display shows previously selected set points.

It allows to select programming menu language.

Touch **SET** to confirm selections

8.2 - DATE AND TIME - REAL TIME CLOCK

Real time clock allows driving via timer programming Auxiliary outputs, sensors cleaning (open chlorine cell) or any remote equipment for the period selected in the program. Operator can also program the working days and exact time of the unit operations via Start/Stop programming.

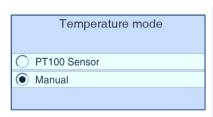

Current date (YYYY/MM/DD)			
1	2	3	DEL
4	5	6	CLEAR
7	8	9	ESC
/	0		SET

Current Time (hh:mm)			
1	2	3	DEL
4	5	6	CLEAR
7	8	9	ESC
:	0		SET

If during programming, operator wishes to change date and time, to enter the function touch the date place on top of the Main Display.

8.3 - SELECTING PROGRAMMING MENU

It allows to select programming menu mode.


Touch **OK** to confirm selection

PLEASE NOTE: when working with Basic menu the following display functions are NOT ACTIVE:

- **mA** programming
- **AUX** programming
- Temperature programming

8.4 - SELECTING TEMPERATURE VALUE

Temperature			
			DEL
	2	3	DEL
4	5	6	CLEAR
7	8	9	ESC
1	0		SET

Select the water temperature value present in the system.

Touch **OK** to confirm selection

TOUCH series controller allows to select either PH or RX (ORP) on one both measurements in the same unit. Measuring parameter can be changed from PH to RX and consequently the display and measurement resolutions will change accordingly.

Meter 1: Measure Type pH Rx	Selecting either one of the two menus, programming will change accordingly.
Meter 2: Measure Type pH Rx	Selecting either one of the two menus, programming will change accordingly.

Touch **OK** to confirm selection

If user wishes to change **Meter 1 and Meter 2 Measure Type** (and relative proper sensor), move to **EXPERT MENU**:

SETTINGS > EXPERT > MEASURED PARAMETERS > METER1 or METER2 MEASURE TYPE: PH or RX (ORP)

At this point user can remain in EXPERT MENU or return to BASIC MENU by moving in SETTINGS and change menu mode

8.6 - SELECTING METER3 CHLORINE OR MEASURING RANGE

TOUCH series chlorine or ppm measurements controller is set as for 4 ranges of chlorine sensors:

- Chlorine Membrane type ion selective sensor CL 0-2 ppm default range; CL 0-20 ppm range; CLTotal 0-20 ppm range;
- **PPM** sensor range 0-20 ppm; range 0-2 ppm; range 0-2000 ppm; range 0-2000 ppm; range 0-2000 ppm;
- Open chlorine cell (CLC3 model) range CLC 0-10 ppm.

After making the selection, consequently display and measurement resolutions will change accordingly.

Meter 3: Measure Type			
CI 0-2 ppm			
CI 0-5ppm			
CI 0-200 ppm			
CLC 10 ppm			
O-2 ppm			
O-20 ppm			
O-200 ppm			
O-2000 ppm			
0-20000 ppm			

Selecting the range required, consequently display and measurement resolutions will change accordingly.

REMINDER: Display will either show ppm or Cl ppm measurements value, according to the selection made. **If Cl ppm range was chosen and "Cl" does not appear, it means selection was not confirmed. Re-select the range and confirm OK**

Touch **OK** to confirm selection

IMPORTANT: once selected Meter 3 Measure Type, ENSURE, to connect the proper Chlorine or PPM sensor.

In case, user wishes to change **Measure Type** (and relative proper sensor), move to: > **SETTINGS**

8.7 - SELECTING METER4 CD CONDUCTIVITY PROBE "K" FACTOR

TOUCH CD STANDARD CONDUCTIVITY RANGES

It is always RECCOMENDED and mandatory to use the correct K probe according to the range in which the controller is working.

- K1 2000 µS □ 20.00 mS (20.000 µS): it can measure down to 1000 µS but accuracy will be more approximated.
- **K5** 200 μS □2000 μS

UPON REQUEST other ranges are available..

TOUCH CD will show µS values up to 1999 (microSiemens) above this value will automatically change to mS (milli Siemens).

IMPORTANT: the above μ S ranges are just indicative: for example, a K1 probe can make good measurements below 1000 μ S, only resolution will be less accurate. However, the same concept doesn't apply the other way around: a K5 probe will never measure higher ranges than 2.000 μ S.

K selections starts from 1.000 and pressing ◀► value can reach up to 20.000 or down to 0,000

K1 select 1.000

K5 select 5.000

Display shows µS but in selected value exceed 1999 µS, it will show 2.00 mS

REMINDER: Display will either show μ S or mS measurements value, according to the selection made. **If mS range was chosen and does not appear, it means selection was not confirmed. Re-select the range and confirm OK**

Controller will adapt Measurement display resolution according to the type of probe used. **IMPORTANT:** once selected CD probe K factor, **ENSURE**, to connect the **proper** Conductivity sensor.

Controller will adapt Measurement and Display resolution according to the probe used.

Touch **OK** to confirm selection

IMPORTANT: once selected Meter 4 Measure Type, ENSURE, to connect the proper Conductivity sensor.

In case, user wishes to change Meter 4 Measure Type (and relative proper sensor), move to EXPERT MENU:

■ SETTINGS > EXPERT > MEASURED PARAMETERS > METER4 MEASURE TYPE: CD PROBE K FACTOR

At this point user can remain in EXPERT MENU or return to BASIC MENU by moving in SETTINGS and change menu mode

BASIC MENU

9.0 MEASURED PARAMETER SETTINGS > BASIC MENU

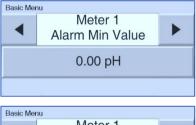
9.1 - MEASURED PARAMETERS METER1 PH (OR RX ORP) > BASIC MENU

PH

Measured parameter
7.00 pH

Touch the area related to measuring parameter

* When selecting **Meter 1 Measure Type (RX)** all settings will read **mV**


RX (Orp)
Measured parameter

650 mV

9.1.1 - ALARM LEVELS PROGRAMMING METER1 PH (**OR** RX ORP)

*Alarm programming will follow the measuring parameter selected in paragraph 8.5 **Meter 1 Measure Type**Alarm function is connected to **ALARM RELAY**

METER1 PH

Here following are two programming steps: when selecting Meter 1 Measure Type as PH measurement, refer to LEFT column; selecting RX refer to RIGHT column.

Meter 1
Alarm Max Value

14.00 pH

Alarm MIN function selects alarm LOWEST level passed which alarm relay will be ON.

Alarm function is connected to ALARM RELAY

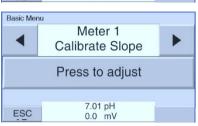
Alarm MAX function selects alarm HIGHEST level passed which alarm relay will be ON.

Touch **SET** to confirm selections

METER1 RX (Orp)

9.1.2 - CALIBRATING PH ELECTRODE

*Calibration operation will follow the measuring parameter selected in paragraph 8.5 **Meter 1 Measure Type** In case RX has been selected, display will show mV calibration steps.


According to the selected measure parameter, Calibration menu will show the electrode to calibrate. We recommend using fresh sample solutions or new electrode and sensors or at least in good conditions. For pH electrode cable length, we recommend max 9 m: for longer distances contact ETATRON or authorised Dealer. Displayed mV value shows sensor efficency (according to the sensor manufacturer specifications)

* When starting calibration display shows random values

Dip pH electrode into 7.00 pH buffer solution for ZERO calibration, wait 2/3 min.

Touch **PRESS TO ADJUST** until display shows 7.00 pH, wait 2/3 minutes Rinse electrode with water (possible deionised) and dry it by tapping with clean cloth or paper napkins.

Dip pH electrode into 4 or 9 pH buffer solution for SLOPE calibration, wait 2/3 min.

- Touch PRESS TO ADJUST ensuring shows the buffer solution value, 4 or 9 pH, wait 2/3 minutes
- **Touch SET** to confirm selection
- Touch **ESC** to go back one step during programming

The mV value at the bottom of the display shows the electrode signal thus indicating the electrode efficiency: for the electrode signal values, refer to electrode instructions and technical characteristics, however the mV value must match the one of the buffer solution used for calibration, allowance \square 20mV.

In case selecting Meter1 Measure type RX, for electrode calibration refer to hereinafter paragraph 9.2.2

9.2 - MEASURED PARAMETERS METER2 RX ORP (or PH) > BASIC MENU

RX (Orp)

Touch the area related to measuring parameter

* When selecting **Meter 2 Measure Type (RX)** all settings will read **mV**

Measured parameter
7.00 pH

9.2.1 - ALARM LEVELS PROGRAMMING METER2 RX ORP (or PH)

*Alarm programming will follow the measuring parameter selected in paragraph 8.5 **Meter 2 Measure Type**Alarm function is connected to **ALARM RELAY**

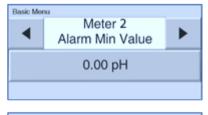
METER2 RX (Orp)

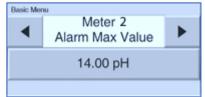
Meter 2

Alarm Max Value

1500 mV

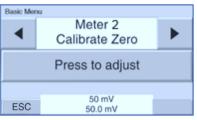
Here following are two programming steps: when selecting Meter 2 Measure Type as PH measurement, refer to RIGHT column; selecting RX refer to LEFT column.

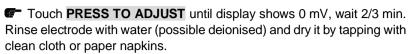

Alarm MIN function selects alarm LOWEST level passed which alarm relay will be ON.

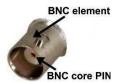

Alarm function is connected to ALARM RELAY

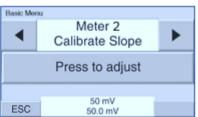
Alarm MAX function selects alarm HIGHEST level

passed which alarm relay will be ON.


METER2 PH


Touch **SET** to confirm selections


9.2.2 - CALIBRATING METER2 RX ORP ELECTRODE



*It shows random values

Short circuit BNC connector using a metal wire (eg: screwdriver), connect pin core with BNC external element.

*It shows random values

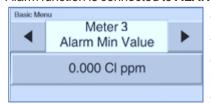
Dip Rx electrode into RX buffer solution for "Slope" calibration, wait 2/3 minutes.

- Touch PRESS TO ADJUST to show buffer solution value mV, wait 2/3 min.
- Touch **SET** to confirm selection
- Touch **ESC** to go back one step during programming

The mV value at the bottom of the display shows the electrode signal thus indicating the electrode efficiency: for the electrode signal values, refer to electrode instructions and technical characteristics, however the mV value must match the one of the buffer solution used for calibration, allowance \Box 20mV.

In case selecting Meter2 Measure type PH, for electrode calibration refer to previous paragraph 9.1.2

9.3 - MEASURED PARAMETER METER3 CL (CHLORINE)_PPM > BASIC MENU


* Parameters Meter3 operation follow the chlorine/ppm settings selected in paragraph 8.6 selecting Chlorine/ PPM range

Select the required range, consequently, display and measurement resolutions will change accordingly. *REMINDER:* Display will either show ppm or Cl ppm measurement values, according to the selection made when starting programming. If Cl ppm range is chosen and "Cl" does not appear, it means selection was not confirmed. Re-select the range and confirm OK.

9.3.1 - ALARM LEVELS PROGRAMMING METER3 CHLORINE PPM

Alarm function is connected to ALARM RELAY

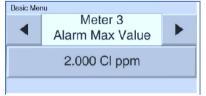
Alarm MIN selects alarm LOWEST level passed which alarm relay will be ON.

Alarm function is connected to ALARM RELAY

Alarm MAX selects alarm HIGHEST level passed which alarm relay will be ON.

Default set point **0.000 CL ppm or PPM range** = 2 cl ppm (**or** ppm, not default) Selecting other ranges will show **0.00** = range 20 Cl ppm **or** ppm **and** 5 Cl ppm

0.00 Total chlorine = range 20 Cl ppm


0.00 = **CLC** open chlorine cell range 10 Cl ppm

0.0 ppm = range 200 ppm

0 ppm = range 2000 ppm

REMINDER: Display will either show CI ppm or ppm measurements value, according to the range selection made when starting programming.

Touch **SET** to confirm selection

9.3.2 - CALIBRATING METER3 CHLORINE_PPM SENSOR

Calibration operation will follow the chlorine_ppm settings selected in paragraph 8.6 Selecting Chlorine/ PPM range

Confirm selection and to approach next submenu.

According to the selected measure parameter, Calibration menu will show the electrode to calibrate.

We recommend using fresh sample solutions or new electrode and sensors or at least in good conditions.

For pH electrode cable length, we recommend max 9 m: for longer distances contact ETATRON or authorised Dealer.

Displayed mV value shows sensor efficency (according to the sensor manufacturer specifications)

Ozone slope calibration: use DPD1 and multiply the result by 0,66

Chlorine Dioxide slope calibration: use DPD1 and multiply the result by 1,9

Hydrogen Peroxide slope calibration: use its own reagent

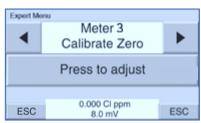
Dissolved Oxygen Zero calibration with water solution and sodium bisulphate; for slope calibration use portable kit.

IMPORTANT: membrane sensors type, CLS series DO NOT NEED ZERO calibration.

However, if sensor conditions are **not ideal**, we **RECOMMEND ZERO** calibration.

For OPEN type amperometric cell (ETATRON CLC model) ZERO Calibration is required! Therefore, use Expert menu.

During Calibration, it may appear the sign – (minus) which either disappears or is removed by correct values settings! The mV value at the bottom of the display shows the mV sensor signal thus indicating the sensor efficiency. We recommend a constant control and recalibration of the sensor by means of DPD1 and DPD3 or, when using OPEN chlorine cells (CLC series) to clean **cell electrodes**


The **ZERO** adjustment must be made under realistic operating conditions with chlorine-free water! (read note herein below).

ONLY EXPERT MENU!!!

REMINDER: let the system water run through the sensor holder: chlorine sensor needs normally **minimum 2/3 hours** before polarising; ensure that the flow into the sensor cell holder is stabilised before proceeding with calibration.

The mV value at the bottom of the display shows sensor signal in mV thus indicating the sensor efficiency.

NOTE: ideally it takes few hours before the value stabilizes, however the best reference is the CI ppm values reading visualized on the display. If **ZERO calibration is necessary,** follow some of the following methods:

B. a **simple method** for calibrating ZERO is to carrie out the controller **electronic Zero** as follow: short circuit pins M-0 (13-14) of the internal terminal board. **Operator must be an expert.**

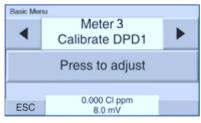
For this step **ENSURE to DISCONNET THE SENSOR** !!!! Press ▲ ▼ until showing **0.00** and then confirm **OK**.

NOTE: this mode guarantees the instrument electronic ZERO, this may not be equivalent

to the real value of chlorine-free water,

which is the chemical physical ZERO chlorine into water.

B. Closed water flow circuit chlorine-free value:


- FOR OPEN CHLORINE CELL: introduce a chlorine-free water stream into the Cell, about 40 □ 50 l/h.
- FOR MEMBRANE ION-SELECTIVE SENSORS: deep the sensor into a chlorine-free water container and gently shake the it (without touching any surface or ensuring no air bubbles) and wait for the measurement to stabilize.

1st INSTALLATION wait that values stabilise (about 2 hours): PRESS TO ADJUST ◀ ▶ until showing 0.00 confirm with SET
2nd RICALIBRATION wait that values stabilise (minimum 1 hour or longer): PRESS TO ADJUST ◀ ▶ until showing 0.00 confirm with SET

- C. Activated carbons, only for OPEN TYPE AMPLOMETRIC CELL (ETATRON CLC model).
- Install a by-pass system ahead of the sensor holder and let the water run through an Activated Carbon cartridge: PRESS TO
 ADJUST ◀ ▶ until showing 0.00 confirm with SET

NOTE: activated carbons tend to reduce the pH value thus making the calibration redundant, must be changed after each calibration and do not guarantee the effective Zero value. This mode is the least recommended due to its complexity

PROCEDE TO CALIBRATION POINT / IMPORTANT: CHECK SENSOR-CONTROLLER INPUT mV SIGNAL

- Select required sample solution value and verify with test kit **DPD1** for free chlorine or **DPD3** for Total chlorine, or by means of portable controller,
- Touch **SET** to confirm selection
- Touch **ESC** to go back one step during programming

Select required sample solution value and verify with test kit **DPD1** for free chlorine or **DPD3** for Total chlorine, or by means of portable controller measures the concentration of free (or total) chlorine ppm in water.

NOTE: keep in mind that it takes a few hours (minimum 2/3) before the value reading stabilizes, however, the best reference is to visualize the CI ppm value shown on the display.

9.4 - MEASURED PARAMETER METER4 CD CONDUCTIVITY > BASIC MENU

* Parameters Meter4 follow the CD conductivity settings selected in paragraph 8.7 selecting CD K factor probe range

Select the required range, consequently, display and measurement resolutions will change accordingly.

CD conductivity measurements, display will show µS values up to 1999 (microSiemens) then automatically will change to mS (milli Siemens) above latter value

9.4.1 - ALARM LEVELS PROGRAMMING METER4 CD CONDUCTIVITY

Alarm function is connected to ALARM RELAY

Alarm MIN selects alarm LOWEST level passed which alarm relay will be ON.

Alarm function is connected to ALARM RELAY

Alarm MAX selects alarm HIGHEST level passed which alarm relay will be ON.

Touch **SET** to confirm selection

9.4.2 - CALIBRATING METER4 CD CONDUCTIVITY SENSOR

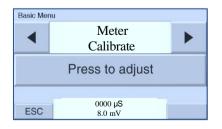
TOUCH CD STANDARD CONDUCTIVITY RANGES

It is always RECCOMENDED and mandatory to use the correct K probe according to the range in which the controller is working.

- K1 2000 μS □20.00 mS (20.000 μS): it can measure down to 2000 μS but accuracy will be more approximated.
- K5 200 μ S \square 2000 μ S: it can measure down to 300 μ S but accuracy will be more approximated.

UPON REQUEST other ranges are available only after ETATRON SYSTEMS Srl approval and with corresponding probe K factor:

- > K 0,6 / 0,8 up to 50 mS (50.000 µS): using ETATRON probe with graphite electrodes or another brand equivalent type.
- > **K10** 20 µS □ 200 µS with appropriate probe.


IMPORTANT NOTES:

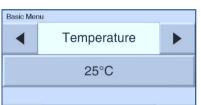
- if NO temperature sensor is used, move to **Expert Menu Settings > Temperature > Manual** to change it to required temperature value;
- when calibrate the sensor ensure that the probe electrodes do not touch any surface except the solution;
- ensure that the sensor is firmly positioned without movements into the solution container;
- wait the necessary time until calibration measurement is stabilised (about 10 min). During calibration, measurements values will always tend to have a very small variation but this will not prevent from continuing unit operation.

A message will appear before calibration reminding:

We recommend making a sample solution which matches the required CD value in the system (normally the set-point value); using a good portable CD meter, ensure conductivity levels correspond to the CD requirements. Use a Conductivity sensor with cell constant according to the selected K factor range (paragraph 9.2) with max cable length of 4 m. After calibration wait 5/10 minutes for measure to stabilise.

- * When starting calibration display shows random values Dip the sensor the sample solution
- Touch PRESS TO ADJUST until display shows the sample solution value wait 5/10 min (until measure is stable, which is within the sensor K range
- Touch **SET** to confirm selection
- Touch ESC to go back one step during programming

* It will show the value according to previously selected constant cell K range. Controller will adapt Measurement and Display resolution according to the type of probe used.


IMPORTANT: once selected CD probe K factor, **ENSURE**, to connect the **proper** Conductivity sensor.

9.5 - MEASURED PARAMETER TEMPERATURE > BASIC MENU

Touch the area related to measuring parameter

NOTE: Temperature value is visualised ONLY if using temperature sensor PT100

Temperature				
1	2	3	DEL	
4	5	6	CLEAR	
7	8	9	ESC	
:	0		SET	

Press **4** to show the environmental temperature. Selecting ESC (instead of entering a temperature value) controller will set 25°C value as default, which can be changed.

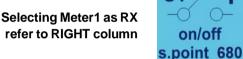
PT100 allows Selecting temperature/electrode measurements compensation, always giving the exact value against the current temperature.

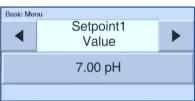
Alarm MIN function selects alarm LOWEST level Alarm function is connected to ALARM RELAY Alarm MAX function selects alarm HIGHEST level

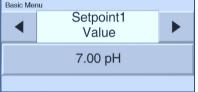
10.0 **SET POINT PROGRAMMING > BASIC MENU**

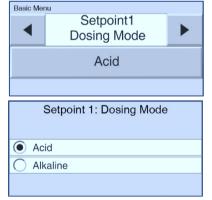
10.1 - SET POINT 1 PH

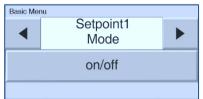
PΗ


METER1/BASIC MENU


TOUCH THE BLUE AREA TO ACCESS **S1** PROGRAMMING

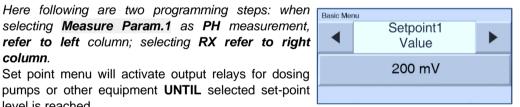

10.1.1 - SET POINT 1 RX (ORP)



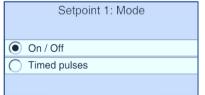


Basic Menu

pH set point 1 is set for Acid mode operation: output is active when measured value is higher than selected set point, dosing pump injects acid. Alkaline mode: output is active when measured value is lower, dosing


pump injects alkaline.

column.


level is reached.

Rx set point 1 is set for **Direct mode** operation: output is active when measured value is lower than selected set-point, dosing pump injects chlorine (Oxidant). Reverse mode: output is

active when measured value is **higher**, dosing pump injects chlorine reducer.



IN EXPERT MODE

Unit is provided with ON-OFF mode which will activate or deactivate in case of reverse mode ON) output relays such as Constant / ON-OFF mode dosing pumps or other ON-OFF mode equipment.

Timed Pulses known as PWM "pulses with modulation" time / pause action allowing proportional mode on each ON-OFF set point according to measured value.

NOTE: display will show this icon

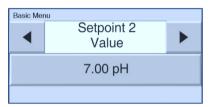
Default activating point at 1.50 pH Default activating point at 150 mV

For more accurate "Timed Pulses" PWM settings, select "Expert" menu from initial settings

- Touch **SET** to confirm selections
- Touch **ESC** goes back one step during programming.

10.2 - SET POINT2 PH

PΗ


METER1/BASIC MENU

10.2.1 - SET POINT2 RX

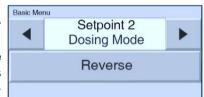
RX (Orp)

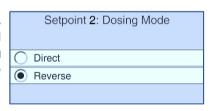

Here following are two programming steps: when selecting Measure Param.1 as PH measurement, refer to left column; selecting RX refer to right column.

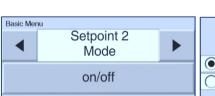
Set point menu will activate output relays for dosing pumps or other equipment UNTIL selected set-point level is reached.

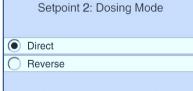
injects

mode:

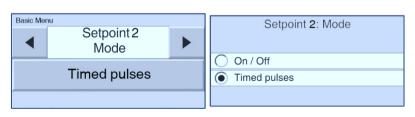





output is active when measured value is lower than selected set point, dosing pump Setpoint 2: Dosing Mode alkaline. Acid output is active when measured value is higher, ○ Acid dosing pump injects acid. Alkaline


Rx set point 2 is set for Reverse mode operation: output is active when measured value is higher than selected setpoint, dosing pump injects chlorine reducer.

Direct mode: output is active when measured value is lower, dosing pump injects chlorine (Oxidant).



pH set point 2 is set for

Alkaline mode operation:

IN EXPERT MODE

Unit is provided with ON-OFF mode which will activate or deactivate in case of reverse mode ON) output relays such as Constant / ON-OFF mode dosing pumps or other ON-OFF mode equipment.

Timed Pulses known as PWM "pulses with modulation" time / pause action allowing proportional mode on each ON-OFF set point according to measured value.

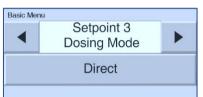
NOTE: display will show this icon

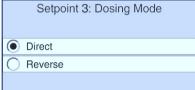
Default activating point at 1.50 pH Default activating point at 150 mV

For more accurate "Timed Pulses" PWM settings, select "Expert" menu from initial settings

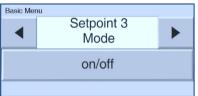

- Touch **SET** to confirm selections
- Touch **ESC** goes back one step during programming.

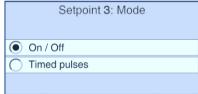
10.3 - SET POINT3 RX (REDOX ORP) METER2 > BASIC MENU

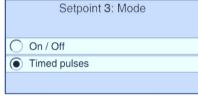




Touch the area related to setpoint3 S3




Set point will activate output relays for dosing pumps or other equipment once selected setpoint level is reached.


Rx set point 3 is set for **Direct mode** operation: output is active when measured value is **lower** than selected set-point, dosing pump injects **chlorine** (Oxidant). **Reverse mode**: output is active when measured value is **higher**, dosing pump injects **chlorine reducer**.

Unit is provided with **ON-OFF mode** which will activate or deactivate in case of reverse mode ON) output relays such as Constant / ON-OFF mode dosing pumps or other ON-OFF mode equipment.

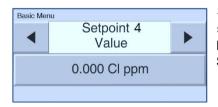
Timed Pulses known as PWM "pulses with modulation" time / pause action allowing proportional mode on each ON-OFF set point according to measured value.

NOTE: display will show this icon

Default activating point at 1.50 pH Default activating point at 150 mV

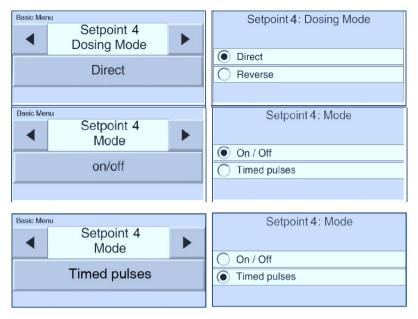
For more accurate "Timed Pulses" PWM settings, select "Expert" menu from initial settings

- **F** Touch **SET** to confirm selections
- Touch **ESC** goes back one step during programming.


10.4 - SET POINT4 CL CHLORINE OR PPM MEASUREMENTS METER3 > BASIC MENU

Touch the area related to setpoint4 **S4**. TOUCH series Chlorine or PPM measurements controller is set as **default** for a sensor range 0-2 CL ppm. Select the required range, consequently, display and measurement resolutions will change accordingly.

REMINDER: Display will either show CI ppm or PPM measurement values, according to the selection made when starting programming in paragraph 8.6 - SELECTING CHLORINE MEASURING RANGE. If "CI ppm" range was chosen and "CI" does not appear, it means selection was not confirmed. Re-select the range and confirm OK.



Set point will activate output relays for dosing pumps or other equipment once selected set-point level is reached.

Default set point **0.000 CL ppm or PPM range** = 2 cl ppm (**or** ppm, not default) Selecting other ranges will show **0.00** = range 20 Cl ppm **or** ppm **and** 5 Cl ppm

0.00 Total chlorine = range 20 Cl ppm
0.00 = CLC open chlorine cell range 10 Cl ppm
0.0 ppm = range 200 ppm / 0 ppm = range 2000 ppm

0 ppm = range 20000 ppm

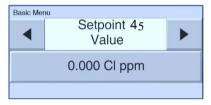
CL set point 3 is set for **Direct mode** operation: output is active when measured value is **lower** than selected set-point, dosing pump injects **chlorine**.

Reverse mode: output is active when measured value is **higher**, dosing pump injects **chlorine reducer**.

Unit is provided with **ON-OFF mode** which will activate or deactivate in case of reverse mode ON) output relays such as Constant / ON-OFF mode dosing pumps or other ON-OFF mode equipment.

Timed Pulses known as PWM "pulses with modulation" time/pause action thus allowing proportional mode on each ON-OFF set point according to measured value. **Default activating point at 0,050 CI ppm or ppm** (range 2 CI ppm or ppm); 0,05 (range 5-10-20 CI ppm); 5 ppm (range 200 ppm); 50 ppm (range 2000 ppm).

NOTE: display will show this icon


For more accurate "Timed Pulses" PWM settings, select "Expert" menu from initial settings

Touch SET to confirm selections

Touch **ESC** goes back one step during programming.

10.5 - SET POINT5 CD CONDUCTIVITY METER4 > BASIC MENU

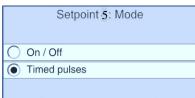


Touch the area related to setpoint S5.

Keep in mind that the value displayed is automatically adjusted to the selected conductivity range cell constant "**K**" characteristic in previous paragraph 8.7.

REMINDER: CD will show μS values up to 1999 (microSiemens) above this value will automatically change to mS (milli Siemens).

Set point will activate output relays for dosing pumps or other equipment once selected set-point level is reached. Display will show μ S values but in case setpoint value exceed 1999 μ S, it will show 2.00 mS (decreasing the value will return to μ S reading).


CD set point 5 is set for **Direct mode** operation: output is active when measured value is **lower** than selected set-point.

Reverse mode operation: output is active when measured value is **higher** than selected set-point.

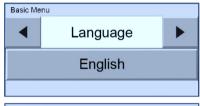
Unit is provided with **ON-OFF mode** which will activate or deactivate in case of reverse mode ON) output relays such as Constant / ON-OFF mode dosing pumps or other ON-OFF mode equipment.

Timed Pulses known as PWM "pulses with modulation" time / pause action allowing proportional mode on each ON-OFF set point according to measured value.

Default activating point at 1000 \muS (range 0-20.000 μ S DEFAULT); **100 \muS** (range 0-2000 μ S); **0,10 \muS** (range 0-200 μ S); **10000 \muS** (range 0-100.000 μ S).

NOTE: display will show this icon

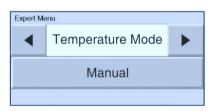
For more accurate "Timed Pulses" PWM settings, select "Expert" menu from initial settings

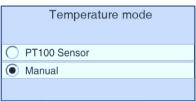

- Touch **SET** to confirm selections
- **F** Touch **ESC** goes back one step during programming.

11.0 SETTINGS > BASIC MENU



Touch the area related to controller settings


It selects programming menu language.

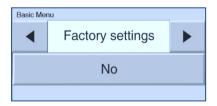


BASIC programming: simplified mode for not professional operators

EXPERT programming: complete programming including functions for a more refined control and results.

IF USER HAS SELECTED TEMPERATURE "MANUAL" MODE, IT WILL SHOW:

☞ Touch Right arrow □


NOTE: Selecting ESC (instead of entering a temperature value) controller will set 25°C value as default, which can be changed.

Temperature value is visualised only if using temperature sensor PT100, NOT in Manual mode

The above windows will not appear when selecting PT100 sensor mode

After selecting, e.g. choosing EXPERT, at first display will still show Basic but as soon as moving to other steps it will change to Expert, and vice versa.

FACTORY SETTINGS: it restores factory default settings. To be used ONLY when parameters or measurements are not responding correctly or when user wants to ensure to re-program from zero. Not to abuse, continuous restoring can affect controller efficiency.

Touch **NO** to enter Factory settings selections.

Once confirmed YES, display will be OFF for 1 second than will return to starting display.

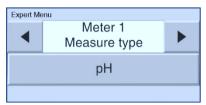
- Touch **SET** to confirm selections
- Touch **ESC** goes back one step during programming.

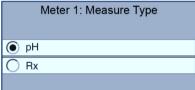
EXPERT MENU

12.0 MEASURED PARAMETER SETTINGS > EXPERT MENU

12.1 - MEASURED PARAMETERS METER1 PH (OR RX ORP) > EXPERT MENU

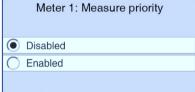
1 - MEASURED PARAMETERS METERT PH (OR RX ORP) > EXPERT MENU


Touch the area related to measuring parameter


* When selecting **Meter 1 Measure Type (RX)** all settings will read **mV**

12.1.1 - SELECTING MEASURING PARAMETER METER1 PH (OR RX ORP)

TOUCH series controller allows to select either PH or RX (ORP) measurements in the same unit. Measuring parameter can be changed from PH to RX and consequently the display and measurement resolutions will change accordingly.

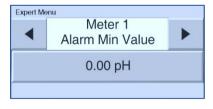

Selecting either one of the two menus, will change the Main Menu programming accordingly.

Touch **SET** to confirm selection

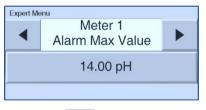
IMPORTANT: once selected PH or RX Meter 1 Measure Type ENSURE, to connect the proper electrode.

12.1.2 - MEASURE PRIORITY METER1

pH priority enables controller to reach first pH set point then to move to chlorine dosing operations ensuring measuring stability. PH priority ENABLED chlorine is OFF; automatically Chlorine ON once reached pH set point (function only available on Meter1).


ONLY VALID FOR PH PRIORITY

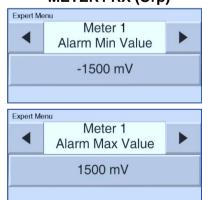
Touch **SET** to confirm selection


12.1.3 - ALARM LEVELS PROGRAMMING METER1 PH (**OR** RX ORP)

*Alarm programming will follow the measuring parameter selected in paragraph 8.5 **Meter 1 Measure Type**Alarm function is connected to **ALARM RELAY**

METER1 PH

Here following are two programming steps: when selecting Meter 1 Measure Type as PH measurement, refer to LEFT column; selecting RX refer to RIGHT column.



Alarm MIN function selects alarm LOWEST level passed which alarm relay will be ON.

Alarm function is connected to ALARM RELAY

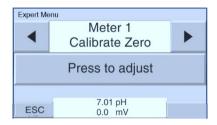
Alarm MAX function selects alarm HIGHEST level passed which alarm relay will be ON.

METER1 RX (Orp)

Touch **SET** to confirm selections

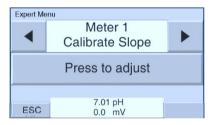
12.1.4 - STARTUP DELAY METER1 PH (OR RX ORP)

Start-up Delay time "blocks" the relay outputs when switching ON the unit thus allowing sensors to polarize ensuring correct measurements.


- Touch **0 min** and select Start up delay from appearing keayboard
- **F** Touch **SET** to confirm selection

12.1.5 - CALIBRATING METER1 PH ELECTRODE

*Calibration operation will follow the measuring parameter selected in paragraph 8.5 **Meter 1 Measure Type** In case RX has been selected, display will show mV calibration steps.


According to the selected measure parameter, Calibration menu will show the electrode to calibrate. We recommend using fresh sample solutions or new electrode and sensors or at least in good conditions. For pH electrode cable length, we recommend max 9 m: for longer distances contact ETATRON or authorised Dealer. Displayed mV value shows sensor efficency (according to the sensor manufacturer specifications)

* When starting calibration display shows random values

Dip pH electrode into 7.00 pH buffer solution for ZERO calibration, wait 2/3 min.

Touch **PRESS TO ADJUST** until display shows 7.00 pH, wait 2/3 minutes Rinse electrode with water (possible deionised) and dry it by tapping with clean cloth or paper napkins.

Dip pH electrode into 4 or 9 pH buffer solution for SLOPE calibration, wait 2/3 min.

- Touch PRESS TO ADJUST ensuring shows the buffer solution value, 4 or 9 pH, wait 2/3 minutes
- **Touch SET** to confirm selection
- Touch ESC to go back one step during programming

The mV value at the bottom of the display shows the electrode signal thus indicating the electrode efficiency: for the electrode signal values, refer to electrode instructions and technical characteristics, however the mV value must match the one of the buffer solution used for calibration, allowance \square 20mV.

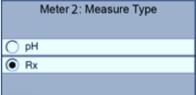
In case selecting Meter1 Measure type RX, for electrode calibration refer to hereinafter paragraph 12.2.4

NOTE: DURING CALIBRATION 4-20mA OUTPUTS ARE BLOCKED UNTIL CALIBRATING STEP IS OVER

12.2 - MEASURED PARAMETERS METER2 RX ORP (OR PH) > EXPERT MENU

RX (Orp) Measured parameter 650 mV

Touch the area related to measuring parameter


* When selecting Meter 2 Measure Type (RX) all settings will read **mV**

12.2.1 - SELECTING MEASURING PARAMETER METER2 RX ORP (OR PH)

TOUCH series controller allows to select either PH or RX (ORP) measurements in the same unit. Measuring parameter can be changed from PH to RX and consequently the display and measurement resolutions will change accordingly.

Selecting either one of the two menus, will change the Main Menu programming accordingly.


Touch **SET** to confirm selection

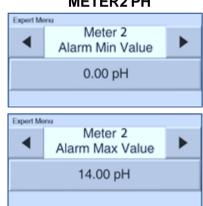
IMPORTANT: once selected PH or RX **Meter 2 Measure Type ENSURE**, to connect the **proper** electrode.

12.2.2 - ALARM LEVELS PROGRAMMING METER2 RX ORP (or PH)

*Alarm programming will follow the measuring parameter selected in paragraph 8.5 Meter 2 Measure Type Alarm function is connected to ALARM RELAY

METER2 RX (Orp)

Here following are two programming steps: when selecting Meter 2 Measure Type as PH measurement, refer to RIGHT column; selecting RX refer to **LEFT** column.

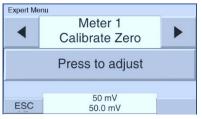

Alarm MIN function selects alarm LOWEST level passed which alarm relay will be ON.

Alarm function is connected to ALARM RELAY

Alarm MAX function selects alarm HIGHEST level passed which alarm relay will be ON.

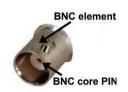
Touch **SET** to confirm selections

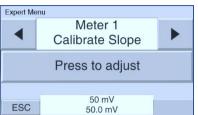
METER2 PH


12.2.3 - STARTUP DELAY METER2 RX ORP (or PH)

Start-up Delay time "blocks" the relay outputs when switching ON the unit thus allowing sensors to polarize ensuring correct measurements.

- Touch 0 min and select Start up delay from appearing keayboard
- Touch **SET** to confirm selection


12.2.4 - CALIBRATING METER2 RX (ORP) ELECTRODE



*It shows random values

Short circuit BNC connector using a metal wire (eg: screwdriver), connect pin core with BNC external element.

Touch **PRESS TO ADJUST** until display shows 0 mV, wait 2/3 min. Rinse electrode with water (possible deionised) and dry it by tapping with clean cloth or paper napkins.

*It shows random values

Dip Rx electrode into RX buffer solution for "Slope" calibration, wait 2/3 minutes.

- Touch PRESS TO ADJUST to show buffer solution value mV, wait 2/3 min.
- **F** Touch **SET** to confirm selection
- Touch ESC to go back one step during programming

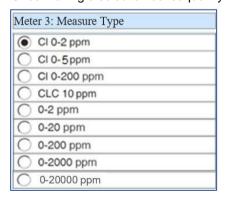
The mV value at the bottom of the display shows the electrode signal thus indicating the electrode efficiency: for the electrode signal values, refer to electrode instructions and technical characteristics, however the mV value must match the one of the buffer solution used for calibration, allowance \Box 20mV.

In case selecting Meter2 Measure type PH, for electrode calibration refer to previous paragraph 12.1.5

NOTE: DURING CALIBRATION 4-20mA OUTPUTS ARE BLOCKED UNTIL CALIBRATING STEP IS OVER

12.3 - MEASURED PARAMETER METER3 CL (CHLORINE)_PPM > EXPERT MENU

* Parameters Meter2 operation follow the chlorine/ppm settings selected in paragraph 8.6 selecting Chlorine/PPM range


Select the required range, consequently, display and measurement resolutions will change accordingly. *REMINDER:* Display will either show ppm or Cl ppm measurement values, according to the selection made when starting programming. *If Cl ppm range is chosen and "Cl" does not appear, it means selection was not confirmed.* Re-select the range and confirm OK.

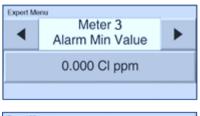
12.3.1 - MEASURE TYPE METER3 CL (CHLORINE) PPM RANGE

TOUCH series chlorine controller is set as for 8 ranges of chlorine or ppm measurements sensors:

- CLS membrane type ion selective: range 0÷2 Cl ppm; range 0÷20 Cl ppm; range 0÷20 Cl ppm (Total chlorine);
- **CLS** membrane type for PPM measurements such as: Chlorine Dioxide, Bromine, Ozone, Peracetic Acid and others: range 0÷2 ppm; range 0÷20 ppm; range 0÷200 ppm; range 0÷2000 ppm; range 0÷2000 ppm;
- CLC open type chorine cell: range CLC 0÷10 Cl ppm;

Once making e selection consequently display and measurement resolutions will change accordingly.

Selecting the range required, consequently display and measurement resolutions will change accordingly.


REMINDER: Display will either show ppm or Cl ppm measurements value, according to the selection made. **If Cl ppm range was chosen and "Cl" does not appear, it means selection was not confirmed. Re-select the range and confirm OK**

Touch **OK** to confirm selection

IMPORTANT: once selected Meter 3 Measure Type, ENSURE, to connect the proper Chlorine or PPM sensor.

12.3.2 - ALARM LEVELS PROGRAMMING METER3 CL (CHLORINE) PPM

Alarm function is connected to RELAY ALARM

Alarm MIN selects alarm LOWEST level passed which alarm relay will be ON.

Alarm function is connected to RELAY ALARM

Alarm MAX selects alarm HIGHEST level passed which alarm relay will be ON.

Default set point **0.000 CL ppm or PPM range** = 2 cl ppm (**or** ppm, not default) Selecting other ranges will show **0.00** = range 20 Cl ppm **or** ppm **and** 5 Cl ppm

0.00 Total chlorine = range 20 Cl ppm

0.00 = **CLC** open chlorine cell range 10 Cl ppm

0.0 ppm = range 200 ppm

0 ppm = range 2000 ppm

0 ppm = range 20000 ppm

REMINDER: Display will either CL ppm or ppm measurements value, according to the range selection made when starting programming

F Touch **SET** to confirm selection

12.3.3 - STARTUP DELAY METER3 CL (CHLORINE)_PPM

Start-up Delay time "blocks" the relay outputs when switching ON the unit thus allowing sensors to polarize ensuring correct measurements.

- Touch 0 min and select Start up delay from appearing keayboard
- **Touch SET** to confirm selection

12.3.4 - CALIBRATING METER3 CL (CHLORINE) PPM SENSOR

Calibration operation will follow the chlorine ppm settings selected in paragraph 8.6 Selecting Chlorine/PPM range

Confirm selection and to approach next submenu.

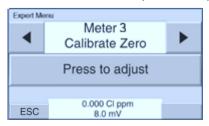
According to the selected measure parameter, Calibration menu will show the electrode to calibrate. We recommend using fresh sample solutions or new electrode and sensors or at least in good conditions. For pH electrode cable length, we recommend max 9 m: for longer distances contact ETATRON or authorised Dealer. Displayed mV value shows sensor efficency (according to the sensor manufacturer specifications)

Ozone slope calibration: use DPD1 and multiply the result by 0,66

Chlorine Dioxide slope calibration: use DPD1 and multiply the result by 1,9

Hydrogen Peroxide slope calibration: use its own reagent

Dissolved Oxygen Zero calibration with water solution and sodium bisulphate; for slope calibration use portable kit.


IMPORTANT: membrane sensors type, CLS series **DO NOT NEED** ZERO calibration.

However, if sensor conditions are not ideal, we RECOMMEND ZERO calibration.

For OPEN type amperometric cell (ETATRON CLC model) ZERO Calibration is required!

During Calibration, it may appear the sign – (minus) which either disappears or is removed by correct values settings! The mV value at the bottom of the display shows the mV sensor signal thus indicating the sensor efficiency. We recommend a constant control and recalibration of the sensor by means of DPD1 and DPD3 or, when using OPEN chlorine cells (CLC series) to clean **cell electrodes**

Touch the area ensuring **NOT** to press **SET**, after waiting 5/10 minutes

The **ZERO** adjustment must be made under realistic operating conditions with chlorine-free water! (read note herein below). **ONLY EXPERT MENU!!!**

REMINDER: let the system water run through the sensor holder: chlorine sensor need normally **minimum 2/3 hours** before polarising; ensure that the flow into the sensor cell holder is stabilised before proceeding with calibration.

The mV value at the bottom of the display shows sensor signal in mV thus indicating the sensor efficiency.

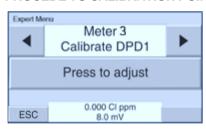
NOTE: ideally it takes few hours before the value stabilizes, however the best reference is the Cl ppm values reading visualized on the display. If **ZERO calibration is necessary,** follow some of the following methods:

B. a **simple method** for calibrating ZERO is to carrie out the controller **electronic Zero** as follow: short circuit pins M-0 (13-14) of the internal terminal board. **Operator must be an expert.**

For this step ENSURE to DISCONNET THE SENSOR !!!! Press ▲ ▼ until showing 0.00 and then confirm OK.

NOTE: this mode guarantees the instrument electronic ZERO, this may not be equivalent to the real value of chlorine-free water, which is the chemical physical ZERO chlorine into water.

B. Closed water flow circuit chlorine-free value:


- FOR OPEN CHLORINE CELL: introduce a chlorine-free water stream into the Cell, about 40 □ 50 l/h.
- FOR MEMBRANE ION-SELECTIVE SENSORS: deep the sensor into a chlorine-free water container and gently shake the it (without touching any surface or ensuring no air bubbles) and wait for the measurement to stabilize.

1st INSTALLATION wait that values stabilise (about 2 hours): PRESS TO ADJUST ◀ ▶ until showing 0.00 confirm with SET
2nd RICALIBRATION wait that values stabilise (minimum 1 hour or longer): PRESS TO ADJUST ◀ ▶ until showing 0.00 confirm with SET

- C. Activated carbons, only for OPEN TYPE AMPLOMETRIC CELL (ETATRON CLC model).
- Install a by-pass system ahead of the sensor holder and let the water run through an Activated Carbon cartridge: PRESS TO
 ADJUST ▼ b until showing 0.00 confirm with SET

NOTE: activated carbons tend to reduce the pH value thus making the calibration redundant, must be changed after each calibration and do not guarantee the effective Zero value. This mode is the least recommended due to its complexity

PROCEDE TO CALIBRATION POINT / IMPORTANT: CHECK SENSOR-CONTROLLER INPUT mV SIGNAL

- Select required sample solution value and verify with test kit **DPD1** for free chlorine or **DPD3** for Total chlorine, or by means of portable controller,
- Touch SET to confirm selection
- Touch **ESC** to go back one step during programming

Select required sample solution value and verify with test kit **DPD1** for free chlorine or **DPD3** for Total chlorine, or by means of portable controller measures the concentration of free (or total) chlorine ppm in water.

NOTE: it takes a few hours (2-3) before the value reading stabilizes, however, the best reference is to visualize the CI ppm value shown on the display. DURING CALIBRATION 4-20mA OUTPUTS ARE BLOCKED UNTIL CALIBRATING STEP IS OVER

12.4 - MEASURED PARAMETER METER4 CD CONDUCTIVITY > EXPERT MENU

* Parameters Meter4 follow the CD conductivity settings selected in paragraph 8.7 selecting CD K factor probe range

Select the required range, consequently, display and measurement resolutions will change accordingly.

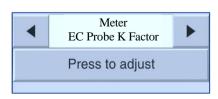
CD conductivity measurements, display will show μ S values up to 1999 (microSiemens) then automatically will change to mS (milli Siemens) above latter value

12.4.1 - MEASURE TYPE METER4 CD CONDUCTIVITY PROBE "K" FACTOR

TOUCH CD STANDARD CONDUCTIVITY RANGES

It is always RECCOMENDED and mandatory to use the correct K probe according to the range in which the controller is working.

- K1 2000 μS □ 20.00 mS (20.000 μS): it can measure down to 1000 μS but accuracy will be more approximated.
- K5 200 μS □2000 μS


UPON REQUEST other ranges are available only after ETATRON SYSTEMS SrI approval and with corresponding probe K factor:

> K 0,6 / 0,8 up to 50 mS (50.000 μ S) > K10 20 μ S \square 200 μ S with appropriate probe.

TOUCH CD will show µS values up to 1999 (microSiemens) above this value will automatically change to mS (milli Siemens).

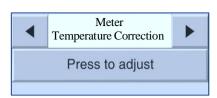
IMPORTANT: before selecting CD probe K factor and starting calibration, **ENSURE**, to connect the **proper** Conductivity sensor.

IMPORTANT: the above μ S ranges are just indicative: for example, a K1 probe can make good measurements below 1000 μ S, only resolution will be less accurate. However, the same concept doesn't apply the other way around: a K5 probe will never measure higher ranges than 2.000 μ S.

METER4 : EC probe K factor			
1	2	3	DEL
4	5	6	CLEAR
7	8	9	ESC
1	0		SET

K selections starts from 1.000 and pressing ◀► value can reach up to 20.000 or down to 0,000

K1 select 1.000


K5 select 5.000

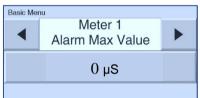
Display shows μS but in selected value exceed 1999 μS , it will show 2.00 mS

Controller will adapt Measurement and Display resolution according to the type of probe used.

Touch **OK** to confirm selection

12.4.2 - TEMPERATURE CORRECTION

CD alfa factor is the correction factor for conductivity measurement in function of temperature: EVERY CONDUCTIVITY SENSOR IS TEMPERATURE-DEPENDENT. Conductivity varies linearly according to the temperature of the solution. This coefficient normalizes the measurement of the conductivity at the reference temperature of 25° C. For aqueous solutions, this coefficient is normally 1.9%-2% per °C. Select **0** if you do not want to normalize the reading. Alfa factor ensures best measurement results and Accuracy.


☞ Touch Right arrow □

EVERY CONDUCTIVITY SENSOR IS TEMPERATURE DEPENDENT. Conductivity varies linearly according to the temperature of the solution. Normally the best measurements are obtained by automatic temperature compensation using PT100 temperature sensor. Whenever operator DOES NOT have the temperature sensor, we strongly recommend setting use MANUAL temperature programming step. TOUCH series allows to choose between:

- MANUAL selecting the buffer solution and/or environmental current temperature (default set at 25°C)
- PT100 allowing automatic temperature compensation connecting a PT100 temperature probe.

12.4.3 - ALARM LEVELS PROGRAMMING METER4 CD CONDUCTIVITY

Alarm function is connected to ALARM RELAY

Alarm MIN selects alarm LOWEST level passed which alarm relay will be ON. Alarm function is connected to **ALARM RELAY** Alarm MAX selects alarm HIGHEST level passed which alarm relay will be ON.

■ Touch SET to confirm selection

12.4.4 - STARTUP DELAY METER4 CD CONDUCTIVITY

Start-up Delay time "blocks" the relay outputs when switching ON the unit thus allowing sensors to polarize ensuring correct measurements.

- Touch 0 min and select Start up delay from appearing keayboard
- Touch **SET** to confirm selection

12.4.5- CALIBRATING METER4 CD CONDUCTIVITY SENSOR

TOUCH CD STANDARD CONDUCTIVITY RANGES

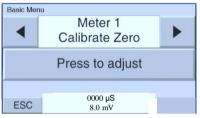
It is always RECCOMENDED and mandatory to use the correct K probe according to the range in which the controller is working.

- K1 2000 µS □20.00 mS (20.000 µS): it can measure down to 2000 µS but accuracy will be more approximated.
- **K5** 200 μS □2000 μS: it can measure down to 300 μS but accuracy will be more approximated.

UPON REQUEST other ranges are available only after ETATRON SYSTEMS Srl approval and with corresponding probe K factor:

- > K 0,6 / 0,8 up to 50 mS (50.000 µS): using ETATRON probe with graphite electrodes or another brand equivalent type.
- > K10 20 µS □ 200 µS with appropriate probe.

IMPORTANT NOTES:


- if NO temperature sensor is used, move to **Expert Menu Settings > Temperature > Manual** to change it to required temperature value;
- when calibrate the sensor ensure that the probe electrodes do not touch any surface except the solution;
- ensure that the sensor is firmly positioned without movements into the solution container;
- wait the necessary time until calibration measurement is stabilised (about 10 min). During calibration, measurements values will always tend to have a very small variation but this will not prevent from continuing unit operation.

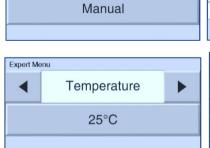
A message will appear before calibration reminding:

Expert Menu

We recommend making a sample solution which matches the required CD value in the system (normally the set-point value); using a good portable CD meter, ensure conductivity levels correspond to the CD requirements. Use a Conductivity sensor with cell constant according to the selected K factor range (paragraph 9.2) with max cable length of 4 m. After calibration wait 5/10 minutes for measure to stabilise.

- * When starting calibration display shows random values
 Dip the sensor the sample solution
- Touch PRESS TO ADJUST until display shows the sample solution value wait 5/10 min (until measure is stable, which is within the sensor K range
- Touch **SET** to confirm selection
- Touch **ESC** to go back one step during programming
- * It will show the value according to previously selected constant cell K range. Controller will adapt Measurement and Display resolution according to the type of probe used.

IMPORTANT: once selected CD probe K factor, **ENSURE**, to connect the **proper** Conductivity sensor.


12.5 - MEASURED PARAMETER TEMPERATURE > EXPERT MENU

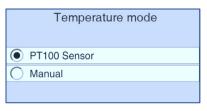
Touch the area related to measuring parameter

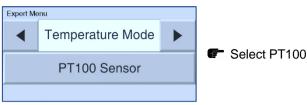
NOTE: Temperature value is visualised ONLY if using temperature sensor PT100

12.5.1 - TEMPERATURE > MANUAL COMPENSATION SETTING

Temperature Mode

Temperature mode
PT100 Sensor
Manual
Tomporaturo

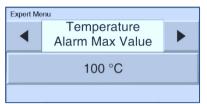

Temperature			
1	2	3	DEL
4	5	6	CLEAR
7	8	9	ESC
: 0 SET			


Press ◀► to show the environmental temperature. Selecting ESC (instead of entering a temperature value) controller will set 25°C value as default, which can be changed

Selecting PT100 allows temperature/electrode measurements compensation, always giving the exact value against the current temperature.

Touch the temperature value shown to change value

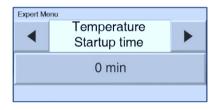
12.5.2 - TEMPERATURE > AUTOMATIC COMPENSATION



If Operator will select in AUX4 programming function Temperature Setpoint, enabling PT100 will allow to select a temperature setpoint touching window **T.Setpoint**

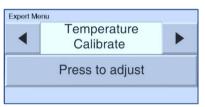
12.5.3 - ALARM LEVELS PROGRAMMING TEMPERATURE

Alarm function is connected to ALARM RELAY



Alarm MIN selects alarm LOWEST level passed which alarm relay will be ON.

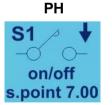
Alarm function is connected to ALARM RELAY

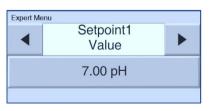

Alarm MAX selects alarm HIGHEST level passed which alarm relay will be ON.

12.5.4 - STARTUP TIME TEMPERATURE FUNCTION

Start-up Delay time "freezes" the relay outputs when switching ON the unit thus allowing sensors to polarize ensuring correct measurements.

12.5.5 - CALIBRATING TEMPERATURE SENSOR




Dip temperature sensor into the liquid at know value, wait 2/3 min.

- Touch PRESS TO ADJUST until display shows the above liquid value, wait 2/3 minutes
- **F** Touch **SET** to confirm selection
- Touch **ESC** to go back one step during programming

13.0 SET POINT PROGRAMMING > EXPERT MENU

13.1 - SET POINT 1 PH

METER1 > EXPERT MENU

TOUCH THE BLUE AREA
TO ACCESS 51

I > EXPERT WENU

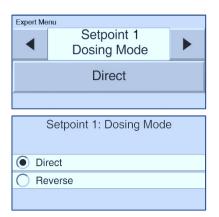
Selecting Meter 1 as RX refer to RIGHT column

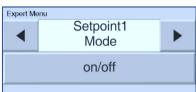
S1 on/off s.point 680

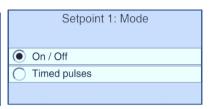
1 .1.1 - SET POINT 1 RX (ORP)

RX (Orp)

Here following are two programming steps: when selecting **Measure Param.1** as **PH** measurement, **refer to left** column; selecting **RX refer to right column**.

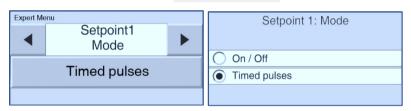

Set point menu will activate output relays for dosing pumps or other equipment **UNTIL** selected set-point level is reached.




pH set point 1 is set for Acid mode operation: output is active when measured value is higher than selected set point, dosing pump injects acid. Alkaline mode: output is active when measured value is lower, dosing pump injects alkaline.

Rx set point 1 is set for **Direct mode** operation: output is active when measured value is **lower** than selected set-point, dosing pump injects **chlorine** (Oxidant).

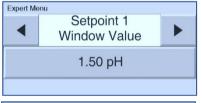
Reverse mode: output is active when measured value is higher, dosing pump injects chlorine reducer.



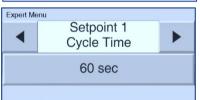
Unit is provided with **ON-OFF mode** which will activate or deactivate in case of reverse mode ON) output relays such as Constant / ON-OFF mode dosing pumps or other ON-OFF mode equipment.

SELECTING MODE "ON-OFF" NEXT PROGRAMMING STEP - "HYSTERESIS"

SELECTING MODE "TIMED PULSES" WILL REQUIRE NEXT PARAMETERS SETTINGS


Timed Pulses known as PWM "pulses with modulation" time / pause action allowing proportional mode on each ON-OFF set point according to measured value.

NOTE: display will show this icon


Default activating point at 1.50 pH Default activating point at 150 mV

For more accurate "Timed Pulses" PWM settings, programm next menu settings.

PH TIMED PULSES PROGRAMMING

Window Width: pulses are timed ON and OFF according to the distance from selected set-point, **default 1.50 pH** (programmable), e.g.: if selected set point is 7.00 pH and window width 1.50 pH; at measured value 9.00 pH, **PWM** mode starts after reaching 8.50 pH with Time/Pause pulses and decreasing the active time while reaching set point value.

Cycle Time: PWM mode cycle 60 seconds (programmable): e.g. set point 7.00 pH and window width 1.50 pH; at measured value 8.50 pH = active time 60 sec / pause time = 0 sec.; at measured value 7.75 pH active time= 30 sec / pause time 30 sec and decreasing active time accordingly while reaching setpoint value. Cycle time depends on many variables such as: distance from injection point to the system to treat, reaction time required, chemical concentration, etc...

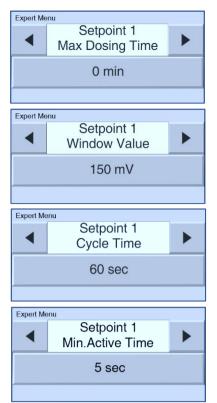
Active Time MIN programmable: it sets the minimum time in which PWM is active; it overrules selected settings. Times Pulses Function follows the following formula:

Active Time MIN = [(measured value – set point) / window width] * cycle time.

If the result of the formula is < the selected Active Time Min, the latter with overrule the first. However, we suggest keeping the default active time shown when programming, that is 5 seconds.

Overdosing time-out alarm selects a period for reaching set-point. If set point is not reached within time, controller will block outputs operations including mA outputs. Alarm is ON shown on display and will activate Alarm relay activating an alarm device.

Max Dosing extra safety function ensuring dosing is carried out within selected time. Relays dosing pumps will open accordingly. This function allows no time limit (dosing continuously in accordance to selected set points) or selects minutes (up to 999) and hours, for example dosing 999 min. within 24 hours.

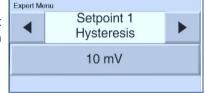

Window Width: pulses are timed ON and OFF according to the distance from selected set-point, **default 150 mV** (programmable), e.g.: if selected set point is 750 mV and window width 150 mV; and measured value 500 mV, **PWM** mode starts after reaching 550 mV with Time/Pause pulses and decreasing the active time while reaching set point value.

Cycle Time: PWM mode cycle 60 seconds (programmable): e.g. set point 700 mV and window width 150 mV; at measured value 550 mV = active time 60 sec/pause time = 0 sec.; at measured value 625 mV active time= 30 sec/pause time 30 sec and decreasing active time accordingly while reaching setpoint value. Cycle time depends on many variables such as: distance from injection point to the system to treat, reaction time required, chemical concentration, etc...

Active Time MIN programmable: it sets the minimum time in which PWM is active; it overrules selected settings. Times Pulses Function follows the following formula:

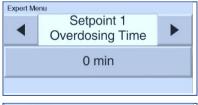
Active Time MIN = [(measured value – set point) / window width] * cycle time.

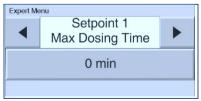
If the result of the formula is < the selected Active Time Min, the latter with overrule the first. However, we suggest keeping the active time shown when programming, that is 5 seconds.



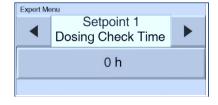
SELECTING MODE "ON-OFF" NEXT PROGRAMMING STEPS ARE AS FOLLOW

NOT AVAILABLE WITH TIMED PULSES MODE

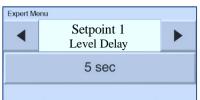

Hysteresis is used to activate or deactivate output relays when selected value is reached. It is useful when there are too many and/or quick changes, which could damage connected equipment. Increasing Hysteresis will allow to move away from set point value.


NOT AVAILABLE WITH TIMED PULSES MODE

Delay time blocks relay outputs to ensure that the outputs are active only when the sensors measurements are stable thus allowing the best results in terms of chemical balance.

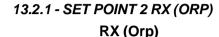

*BACK TO SETPOINT PROGRAMMING STEPS FROM EITHER "ON-OFF" OR "TIMED PULSES" MODE

Overdosing time-out alarm selects a period for reaching set-point. If set point is not reached within time, controller will block outputs operations including mA outputs. Alarm is ON shown on display and will activate Alarm relay activating an alarm device.


Max Dosing extra safety function ensuring dosing is carried out within selected time. Relays dosing pumps will open accordingly. This function allows no time limit (dosing continuously in accordance to selected set points) or selects minutes (up to 999) and hours, for example dosing 999 min. within 24 hours.

In case of programming Max Dosing different than 0, operator can select a **Dosing check time** period (hours) in which the unit checks the total dosing time effected, example: every 3 hours unit checks the total dosing time; if the dosing time has exceeded programmed selection, it will not effect any dosing until dosing time is restored to original programming.

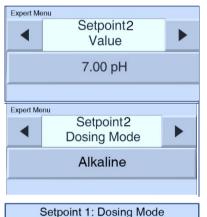
A delay time can be set for lack of flow; if the lack of flow is greater than the set time, the controller waits the time set in the "Start Delay" parameter, before possibly enabling the various outputs for the pump control.


You can set a delay time on the level alarm, the controller goes into alarm as soon as it receives the contact from the relevant one level probe, but deactivates the operation of the pumps connected to it only after the previously set time

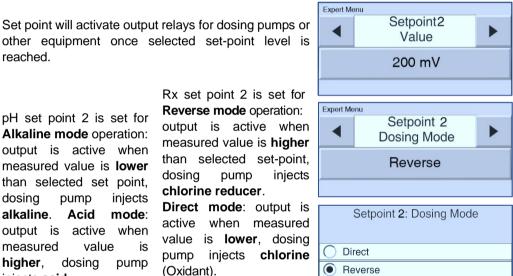
- Touch **SET** to confirm selections
- Touch **ESC** goes back one step during programming.

13.2 - SET POINT 2 PH

PH on/off s.point 7.00


METER1/EXPERT MENU

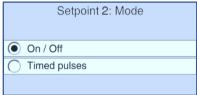
Selecting Meter1 as RX refer to RIGHT column



pH set point 2 is set for Alkaline mode operation: output is active when measured value is lower than selected set point, dosing pump injects alkaline. Acid mode: output is active when measured value higher, dosing pump injects acid.

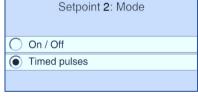
reached.

Rx set point 2 is set for Reverse mode operation: output is active when measured value is higher than selected set-point, dosing pump injects chlorine reducer.


Direct mode: output is active when measured value is lower, dosing pump injects chlorine (Oxidant).

Acid

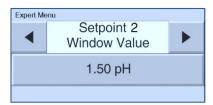
Alkaline



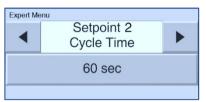
Unit is provided with **ON-OFF mode** which will activate or deactivate in case of reverse mode ON) output relays such as Constant / ON-OFF mode dosing pumps or other ON-OFF mode equipment.

SELECTING MODE "ON-OFF" NEXT PROGRAMMING STEP ["HYSTERESIS"

SELECTING MODE "TIMED PULSES" WILL REQUIRE NEXT PARAMETERS SETTINGS


Timed Pulses known as PWM "pulses with modulation" time / pause action allowing proportional mode on each ON-OFF set point according to measured value.

NOTE: display will show this icon


Default activating point at 1.50 pH Default activating point at 150 mV

For more accurate "Timed Pulses" PWM settings, programm next menu settings.

PH TIMED PULSES PROGRAMMING

Window Width: pulses are timed ON and OFF according to the distance from selected set-point, **default 1.50 pH** (programmable), e.g.: if selected set point is 7.00 pH and window width 1.50 pH; at measured value 9.00 pH, **PWM** mode starts after reaching 8.50 pH with Time/Pause pulses and decreasing the active time while reaching set point value.

Cycle Time: PWM mode cycle 60 seconds (programmable): e.g. set point 7,00 pH and window width 1.50 pH; at measured value 8.50 pH = active time 60 sec / pause time = 0 sec.; at measured value 7.75 pH active time= 30 sec / pause time 30 sec and decreasing active time accordingly while reaching setpoint value. Cycle time depends on many variables such as: distance from injection point to the system to treat, reaction time required, chemical concentration, etc...

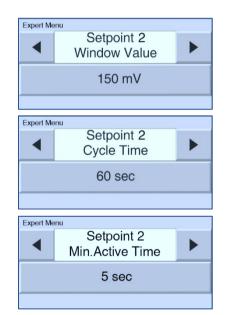
Active Time MIN programmable: it sets the minimum time in which PWM is active; it overrules selected settings. Times Pulses Function follows the following formula:

Active Time MIN = [(measured value – set point) / window width] * cycle time.

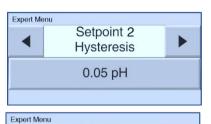
If the result of the formula is < the selected Active Time Min, the latter with overrule the first. However, we suggest keeping the default active time shown when programming, that is 5 seconds.

RX (ORP) TIMED PULSES PROGRAMMING

Window Width: pulses are timed ON and OFF according to the distance from selected setpoint, **default 150 mV** (programmable), e.g.: if selected set point is 750 mV and window width 150 mV; and measured value 500 mV, **PWM** mode starts after reaching 550 mV with Time/Pause pulses and decreasing the active time while reaching set point value.


Cycle Time: PWM mode cycle 60 seconds (programmable): e.g. set point 700 mV and window width 150 mV; at measured value 550 mV = active time 60 sec / pause time = 0 sec.; at measured value 625 mV active time= 30 sec / pause time 30 sec and decreasing active time accordingly while reaching setpoint value. Cycle time depends on many variables such as: distance from injection point to the system to treat, reaction time required, chemical concentration, etc...

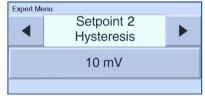
Active Time MIN programmable: it sets the minimum time in which PWM is active; it overrules selected settings. Times Pulses Function follows the following formula:


Active Time MIN = [(measured value – set point) / window width] * cycle time.

If the result of the formula is < the selected Active Time Min, the latter with overrule the first.

However, we suggest keeping the active time shown when programming, that is 5 seconds.

SELECTING MODE "ON-OFF" NEXT PROGRAMMING STEPS ARE AS FOLLOW


Setpoint 2

Delay

5 sec

NOT AVAILABLE WITH TIMED PULSES MODE

Hysteresis is used to activate or deactivate output relays when selected value is reached. It is useful when there are too many and/or quick changes, which could damage connected equipment. Increasing Hysteresis will allow to move away from set point value.

NOT AVAILABLE WITH TIMED PULSES MODE

Delay time blocks relay outputs to ensure that the outputs are active only when the sensors measurements are stable thus allowing the best results in terms of chemical balance.

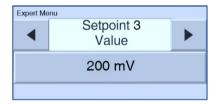
^{*} BACK TO SETPOINT PROGRAMMING STEPS FROM EITHER "ON-OFF" OR "TIMED PULSES" MODE

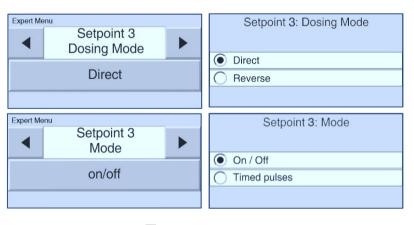
Overdosing time-out alarm selects a period for reaching set-point. If set point is not reached within time, controller will block outputs operations including mA outputs. Alarm is ON shown on display and will activate Alarm relay activating an alarm device.

Max Dosing extra safety function ensuring dosing is carried out within selected time. Relays dosing pumps will open accordingly. This function allows no time limit (dosing continuously in accordance to selected set points) or selects minutes (up to 999) and hours, for example dosing 999 min. within 24 hours.

In case of programming Max Dosing different than 0, operator can select a **Dosing check time** period (hours) in which the unit checks the total dosing time effected, example: every 3 hours unit checks the total dosing time; if the dosing time has exceeded programmed selection, it will not effect any dosing until dosing time is restored to original programming.

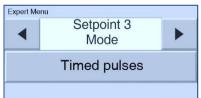
- Touch **SET** to confirm selections
- **T** Touch **ESC** goes back one step during programming.

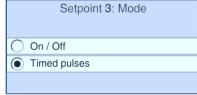

13.3 - SET POINT3 RX (REDOX ORP) METER2 > EXPERT MENU



Touch the area related to setpoint3 S3

Set point will activate output relays for dosing pumps or other equipment once selected setpoint level is reached.

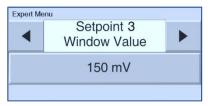



Rx set point 3 is set for **Direct mode** operation: output is active when measured value is **lower** than selected set-point, dosing pump injects **chlorine** (Oxidant).

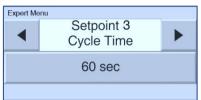
Reverse mode: output is active when measured value is higher, dosing pump injects chlorine reducer. Unit is provided with ON-OFF mode which will activate or deactivate in case of reverse mode ON) output relays such as Constant / ON-OFF mode dosing pumps or other ON-OFF mode equipment.

SELECTING MODE "ON-OFF" NEXT PROGRAMMING STEP ["HYSTERESIS"

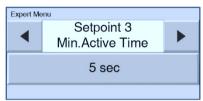
SELECTING MODE "TIMED PULSES" WILL REQUIRE NEXT PARAMETERS SETTINGS


Timed Pulses known as PWM "pulses with modulation" time / pause action allowing proportional mode on each ON-OFF set point according to measured value.

NOTE: display will show this ice

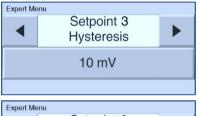

Default activating point at 150 mV

For more accurate "Timed Pulses" PWM settings, programm next menu settings.


RX (REDOX ORP) MEASUREMENTS TIMED PULSES PROGRAMMING

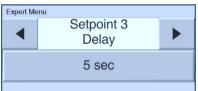
Window Width: pulses are timed ON and OFF according to the distance from selected set-point, **default 150 mV** (programmable), e.g.: if selected set point is 750 mV and window width 150 mV; and measured value 500 mV, **PWM** mode starts after reaching 550 mV with Time/Pause pulses and decreasing the active time while reaching set point value.

Cycle Time: PWM mode cycle 60 seconds (programmable): e.g. set point 700 mV and window width 150 mV; at measured value 550 mV = active time 60 sec / pause time = 0 sec.; at measured value 625 mV active time= 30 sec / pause time 30 sec and decreasing active time accordingly while reaching setpoint value. Cycle time depends on many variables such as: distance from injection point to the system to treat, reaction time required, chemical concentration, etc...



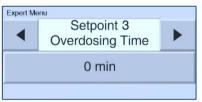
Active Time MIN programmable: it sets the minimum time in which PWM is active; it overrules selected settings. Times Pulses Function follows the following formula:

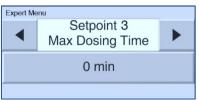
Active Time MIN = [(measured value – set point) / window width] * cycle time.


If the result of the formula is < the selected Active Time Min, the latter with overrule the first. However, we suggest keeping the active time shown when programming, that is 5 seconds.

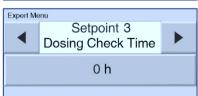
SELECTING MODE "ON-OFF" NEXT PROGRAMMING STEPS ARE AS FOLLOW

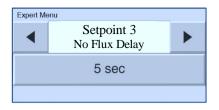
NOT AVAILABLE WITH TIMED PULSES MODE

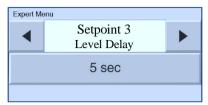

Hysteresis is used to activate or deactivate output relays when selected value is reached. It is useful when there are too many and/or quick changes, which could damage connected equipment. Increasing Hysteresis will allow to move away from set point value.


NOT AVAILABLE WITH TIMED PULSES MODE

Delay time blocks relay outputs to ensure that the outputs are active only when the sensors measurements are stable thus allowing the best results in terms of chemical balance.


*BACK TO SETPOINT PROGRAMMING STEPS FROM EITHER "ON-OFF" OR "TIMED PULSES" MODE


Overdosing time-out alarm selects a period for reaching set-point. If set point is not reached within time, controller will block outputs operations including mA outputs. Alarm is ON shown on display and will activate Alarm relay activating an alarm device.

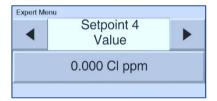

Max Dosing extra safety function ensuring dosing is carried out within selected time. Relays dosing pumps will open accordingly. This function allows no time limit (dosing continuously in accordance to selected set points) or selects minutes (up to 999) and hours, for example dosing 999 min. within 24 hours.

In case of programming Max Dosing different than 0, operator can select a **Dosing check time** period (hours) in which the unit checks the total dosing time effected, example: every 3 hours unit checks the total dosing time; if the dosing time has exceeded programmed selection, it will not effect any dosing until dosing time is restored to original programming.

A **delay time** can be set for **lack of flow**; if the lack of flow is greater than the set time, the controller waits the time set in the "Start Delay" parameter, before possibly enabling the various outputs for the pump control.

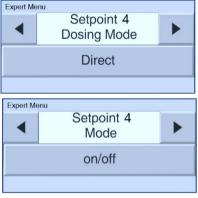
You can set a **delay time on the level alarm**, the controller goes into alarm as soon as it receives the contact from the relevant one level probe, but deactivates the operation of the pumps connected to it only after the previously set time

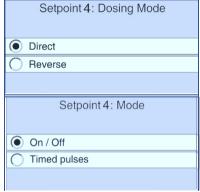
- Touch **SET** to confirm selections
- Touch **ESC** goes back one step during programming.


13.4 - SET POINT4 CL CHLORINE OR PPM MEASUREMENTS METER3 > EXPERT MENU

Touch the area related to setpoint3 **S3**. TOUCH series Chlorine or PPM measurements controller is set as default for a sensor range 0-2 CL ppm. Select the required range, consequently, display and measurement resolutions will change accordingly.

REMINDER: Display will either show CI ppm or PPM measurement values, according to the selection made when starting programming in paragraph 8.6 - SELECTING CHLORINE MEASURING RANGE. If "CI ppm" range was chosen and "CI" does not appear, it means selection was not confirmed. Re-select the range and confirm OK.

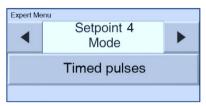

Default set point **0.000 CL ppm or PPM range** = 2 cl ppm (**or** ppm, not default) Selecting other ranges will show **0.00** = range 20 Cl ppm **or** ppm **and** 5 Cl ppm

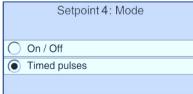

0.00 Total chlorine = range 20 Cl ppm

0.00 = CLC open chlorine cell range 10 Cl ppm

0.0 ppm = range 200 ppm

0 ppm = range 2000 ppm and 20000 ppm

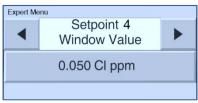

CL set point 3 is set for **Direct mode** operation: output is active when measured value is **lower** than selected set-point, dosing pump injects **chlorine**.


Reverse mode: output is active when measured value is **higher**, dosing pump injects **chlorine reducer**.

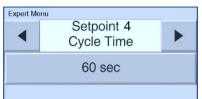
Unit is provided with **ON-OFF mode** which will activate or deactivate in case of reverse mode ON) output relays such as Constant / ON-OFF mode dosing pumps or other ON-OFF mode equipment.

SELECTING MODE "ON-OFF" NEXT PROGRAMMING STEP ["HYSTERESIS"

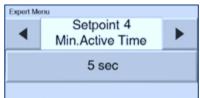
SELECTING MODE "TIMED PULSES" WILL REQUIRE NEXT PARAMETERS SETTINGS



*Timed Pulses also known as PWM "pulses with modulation" time/pause allows proportional mode on each ON-OFF set point activating corresponding pulses on output relay according to measured value and always relating to the previous selected settings. **Default activating point at 0,050 CI ppm or ppm** (range 2 CI ppm or ppm); 0,05 (range 5-10-20 CI ppm);


ITO I E. dispi

For more accurate "Timed Pulses" PWM settings, programm next menu settings.


CHLORINE OR PPM MEASUREMENTS TIMED PULSES PROGRAMMING

Window Width: pulses are timed ON and OFF according to the distance from selected set-point, programmable, e.g.: working with a chlorine range 0-2 Cl ppm and window width 0,050; if selected set point is 0,500 Cl ppm and measured value is 0,400 ppm **PWM** mode starts after reaching 0,450 Cl ppm (0,050 Cl ppm) with Time/Pause pulses according to selected time Cycle in seconds.

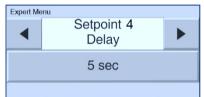
Cycle Time: PWM mode cycle 60 seconds (programmable): e.g. setpoint 0,500 Cl ppm, window width 0,050; at measured value 0,450 Cl ppm = active time 60 sec / pause time = 0 sec.; at value 0,475 Cl ppm active time= 30 sec / pause time 30 sec and decreasing active time accordingly while reaching setpoint value. Cycle time depends on many variables such as: distance from injection point to the system to treat, reaction time required, chemical concentration, etc....

Active Time MIN programmable: it sets the minimum time in which PWM is active; it overrules selected settings. Times Pulses Function follows the following formula:

Active Time MIN = [(measured value – set point) / window width] * cycle time.

If the result of the formula is < the selected Active Time Min, the latter with overrule the first. However, we suggest keeping the default active time shown when programming, that is 5 seconds.

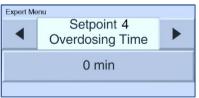
SELECTING MODE "ON-OFF" NEXT PROGRAMMING STEPS ARE AS FOLLOW

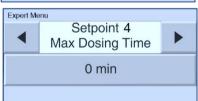

Setpoint 4 Hysteresis 0.005 Cl ppm

NOT AVAILABLE WITH TIMED PULSES MODE

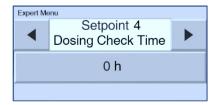
Hysteresis is used to activate or deactivate output relays when selected value is reached. It is useful when there are too many and/or quick changes, which could damage connected equipment. Increasing Hysteresis will allow to move away from set point value.

Default Hysteresis 9 005 Cl. ppm (range 0-2 Cl. ppm or ppm): 9 05 (range 0-2 Cl. ppm): 9 05 (range 0-2 Cl. ppm): 9 05 (range 0-2 Cl. ppm)

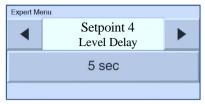

Default Hysteresis 0,005 CI ppm (range 0-2 CI ppm or ppm); **0,05** (range 0-20 CI ppm or ppm, Free and Total CI / range 5 CI ppm), **0,05 CI ppm** (range 0-10 CI ppm, CLC open cell); **0.5 ppm** = range 200 ppm; **5 ppm** = range 2000 ppm. PRESS **VALUE** TO PROGRAMM


NOT AVAILABLE WITH TIMED PULSES MODE

Delay time blocks relay outputs to ensure that the outputs are active only when the sensors measurements are stable thus allowing the best results in terms of chemical balance.


*BACK TO SETPOINT PROGRAMMING STEPS FROM EITHER "ON-OFF" OR "TIMED PULSES" MODE

Overdosing time-out alarm selects a period for reaching set-point. If set point is not reached within time, controller will block outputs operations including mA outputs. Alarm is ON shown on display and will activate Alarm relay activating an alarm device.

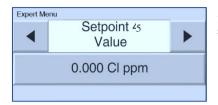

Max Dosing extra safety function ensuring dosing is carried out within selected time. Relays dosing pumps will open accordingly. This function allows no time limit (dosing continuously in accordance to selected set points) or selects minutes (up to 999) and hours, for example dosing 999 min. within 24 hours.

In case of programming Max Dosing different than 0, operator can select a **Dosing check time** period (hours) in which the unit checks the total dosing time effected, example: every 3 hours unit checks the total dosing time; if the dosing time has exceeded programmed selection, it will not effect any dosing until dosing time is restored to original programming.

A **delay time** can be set for **lack of flow**; if the lack of flow is greater than the set time, the controller waits the time set in the "Start Delay" parameter, before possibly enabling the various outputs for the pump control.

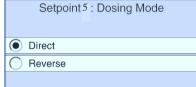
You can set a **delay time on the level alarm**, the controller goes into alarm as soon as it receives the contact from the relevant one level probe, but deactivates the operation of the pumps connected to it only after the previously set time

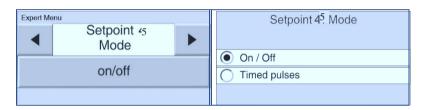
Touch SET to confirm selections


F Touch ESC goes back one step during programming.

13.5 - SET POINT5 CD CONDUCTIVITY METER3 > EXPERT MENU

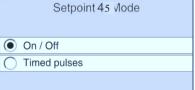
S5 ↑ on/off s.point10.00 Touch the area related to setpoint4 **S5** Keep in mind that the value displayed is automatically adjusted to the selected conductivity range cell constant "**K**" characteristic in previous paragraph 8.7.


REMINDER: CD will show µS values up to 1999 (microSiemens) above this value will automatically change to mS (milli Siemens).


Set point will activate output relays for dosing pumps or other equipment once selected set-point level is reached. Display will show μ S values but in case setpoint value exceed 1999 μ S, it will show 2.00 mS (decreasing the value will return to μ S reading).

EC set point 5 is set for **Direct mode** operation: output is active when measured value is **lower** than selected set-point.

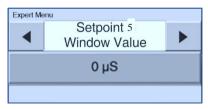
Reverse mode operation: output is active when measured value is **higher** than selected setpoint.



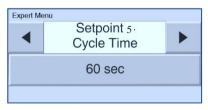
Unit is provided with **ON-OFF mode** which will activate or deactivate in case of reverse mode ON) output relays such as Constant / ON-OFF mode dosing pumps or other ON-OFF mode equipment.

SELECTING MODE "ON-OFF" NEXT PROGRAMMING STEP ["HYSTERESIS"

SELECTING MODE "TIMED PULSES" WILL REQUIRE NEXT PARAMETERS SETTINGS



Timed Pulses known as PWM "pulses with modulation" time / pause action allowing proportional mode on each ON-OFF set point according to measured value.

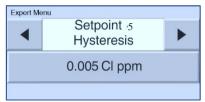

Default activating point at 1000 μS (range 0-20.000 μS DEFAULT); **100 μS** (range 0-2000 μS); **0,10 μS** (range 0-200 μS); **10000 μS** (range 0-100.000 μS)

For more accurate "Timed Pulses" PWM settings, programm next menu settings.

CD CONDUCTIVITY MEASUREMENTS TIMED PULSES PROGRAMMING

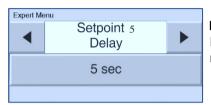
Window Width (example with range 2000 \muS): pulses are timed ON and OFF according to the distance from selected set point, programmable, example: if CD selected set point is 700 μ S and window width 100 μ S; at measured value is 600 μ S, **PWM** mode will start with Time/Pause pulses and decreasing the active time while reaching set point value.

Cycle Time: PWM mode cycle 60 seconds (programmable): e.g. CD set point 700 μ S, window width 100 μ S; at measured value 600 μ S = active time 60 sec / pause time = 0 sec.; at measured value 650 μ S CD active time= 30 sec / pause time 30 sec ... and decreasing active time accordingly while reaching setpoint value. Cycle time depends on many variables such as: distance from injection point to the system to treat, reaction time required, chemical concentration, etc....



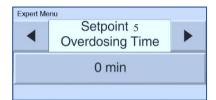
Active Time MIN programmable: it sets the minimum time in which PWM is active; it overrules selected settings. Times Pulses Function follows the following formula:

Active Time MIN = [(measured value – set point) / window width] * cycle time.


If the result of the formula is < the selected Active Time Min, the latter with overrule the first. However, we suggest keeping the default active time shown when programming, that is 5 seconds.

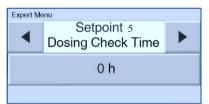
SELECTING MODE "ON-OFF" NEXT PROGRAMMING STEPS ARE AS FOLLOW

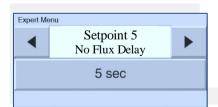
NOT AVAILABLE WITH TIMED PULSES MODE

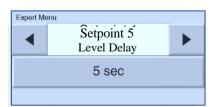

Hysteresis is used to activate or deactivate output relays when selected value is reached. It is useful when there are too many and/or quick changes, which could damage connected equipment. Increasing Hysteresis will allow to move away from set point value. PRESS **VALUE** TO PROGRAMM

NOT AVAILABLE WITH TIMED PULSES MODE

Delay time blocks relay outputs to ensure that the outputs are active only when the sensors measurements are stable thus allowing the best results in terms of chemical balance.


* BACK TO SETPOINT PROGRAMMING STEPS FROM EITHER "ON-OFF" OR "TIMED PULSES" MODE


Overdosing time-out alarm selects a period for reaching set-point. If set point is not reached within time, controller will block outputs operations including mA outputs. Alarm is ON shown on display and will activate Alarm relay activating an alarm device.


Max Dosing extra safety function ensuring dosing is carried out within selected time. Relays dosing pumps will open accordingly. This function allows no time limit (dosing continuously in accordance to selected set points) or selects minutes (up to 999) and hours, for example dosing 999 min. within 24 hours.

In case of programming Max Dosing different than 0, operator can select a **Dosing check time** period (hours) in which the unit checks the total dosing time effected, example: every 3 hours unit checks the total dosing time; if the dosing time has exceeded programmed selection, it will not effect any dosing until dosing time is restored to original programming.

A **delay time** can be set for **lack of flow**; if the lack of flow is greater than the set time, the controller waits the time set in the "Start Delay" parameter, before possibly enabling the various outputs for the pump control.

You can set a **delay time on the level alarm**, the controller goes into alarm as soon as it receives the contact from the relevant one level probe, but deactivates the operation of the pumps connected to it only after the previously set time

Touch ESC goes back one step during programming.

14.0 4-20mA ANALOG CURRENT OUTPUT FUNCTION SELECTION > EXPERT MENU

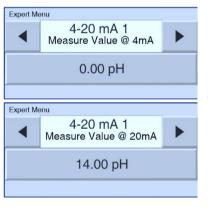
NOTE: DURING CALIBRATION 4-20mA OUTPUTS ARE BLOCKED UNTIL CALIBRATING STEP IS OVER

Touch the area related to **mA** programming

- **mA Device** driving data logger or other equipment suitable to work with mA signal.
- **DOSING SETPOINT**: driving dosing pumps suitable to work with mA signal
- **mA Device(T)** driving data logger or other equipment suitable to work with mA signal, linked with temperature measurement

14.1.1 - 4-20mA1 PH > AUX FUNCTION

4-20 mA 1: Mode A-20 mA 1 Mode Press to adjust MA Device Dosing setpoint MA Device(T)

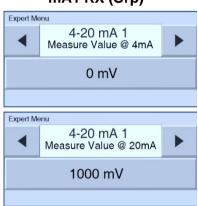

14.1.2 - 4-20mA1 RX > AUX FUNCTION

Proportional analog 4-20mA follows the option previously selected either pH or Rx measuring parameter.

Touch **SET** to confirm selection scrivere info su nuove mod mA Device e ma device T

Proportional analog 4-20 mA outputs are combined to the unit measurements in real time of either pH or RX thus driving remote equipment such as data logger, PLC or recorders or other equipment suitable to process a mA signal.

mA1 PH



mA Device FUNCTION

*Programming according selected METER1 valid for: 4-20mA1 pH / 4-20mA1 RX (ORP)

Select the value corresponding to 4 and 20 mA points according to **Setpoint 1** settings

mA1 RX (Orp)

- Touch **SET** to confirm selection.
- Touch ESC to go back one step during programming

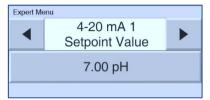
mA (1,2,3) Device(T) FUNCTION


There is the possibility of having an output linked to the value of the **temperature** measurement

^{***} RX display will appear in case selecting at the beginning or during operations, Meter 1 Measure Type.

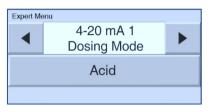
14.1.3 - 4-20MA1 PH > DOSING SETPOINT

14.1.4 - 4-20MA1 RX > DOSING SETPOINT


Proportional analog 4-20mA follows the option previously selected either pH or Rx measuring parameter.

Touch **SET** to confirm selection

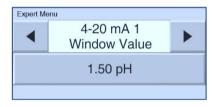
mA1 PH


mA1 RX (Orp)

*Programming according selected **METER1** valid for: **4-20mA1 pH / 4-20mA1 RX (ORP)**

Select the setpoint value

4-20 mA1: Dosing Mode


Acid
Alkaline

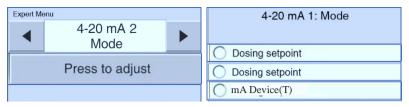
pH is set for Acid mode operation: output is active when measured value is higher than selected set point, dosing pump injects acid. Alkaline mode: output is active when measured value is lower, dosing pump injects alkaline.

Rx (Orp) is set for **Direct mode** operation: output is active when measured value is **lower** than selected set-point, dosing pump injects **chlorine** (Oxidant).

Reverse mode: output is active when measured value is higher, dosing pump injects chlorine reducer.

Window Width: sets the distance from set point at which point 4-20mA mode will start: 4mA = 0 dosing pump pulse, 20mA = max dosing pump pulses frequency. Window width depends on many variables: distance injection point, reaction time, chemical concentration %, etc....

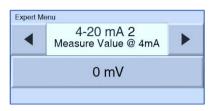
Overdosing time-out alarm selects a period for reaching set-point. If set point is not reached within time, controller will block outputs operations including mA outputs. Alarm is ON shown on display and will activate Alarm relay activating an alarm device.

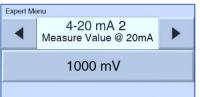

In case of programming Max Dosing different than 0, operator can select a **Dosing check time** period (hours) in which the unit checks the total dosing time effected, example: every 3 hours unit checks the total dosing time; if the dosing time has exceeded programmed selection, it will not effect any dosing until dosing time is restored to original programming

Max Dosing extra safety function ensuring dosing is carried out within selected time. Relays dosing pumps will open accordingly. This function allows no time limit (dosing continuously in accordance to selected set points) or selects minutes (up to 999) and hours, for example dosing 999 min. within 24 hours.

Touch **SET** to confirm selections

Touch **ESC** goes back one step during programming.


14.2 - 4-20mA2 RX (ORP) METER2 > mA Device FUNCTION



Meter2 Proportional analog 4-20mA follows the option previously selected either RX (or pH) Meter2 measuring parameter.

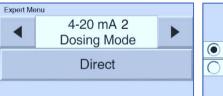
Touch SET to confirm selection

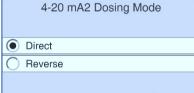
Proportional analog 4-20 mA outputs are combined to the unit measurements in real time of either pH or RX thus driving remote equipment such as data logger, PLC or recorders or other equipment suitable to process a mA signal.



Select the value corresponding to 4 and 20 mA points according to **Setpoint 3** settings

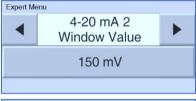
- Touch **SET** to confirm selection.
- Touch **ESC** to go back one step during programming

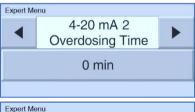

14.2.1 - 4-20mA2 RX (ORP) METER2 > DOSING SETPOINT



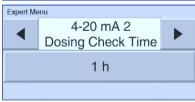
*Programming according selected **METER2** valid for:

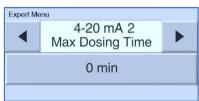
4-20mA2 RX (ORP) / 4-20mA2 pH


Select the setpoint value

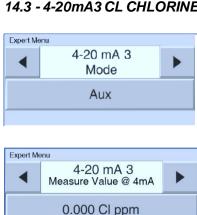


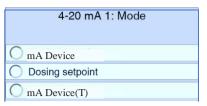
RX (Orp) is set for **Direct mode** operation: output is active when measured value is **lower** than selected set-point, dosing pump injects **chlorine** (Oxidant).


Reverse mode: output is active when measured value is **higher**, dosing pump injects **chlorine reducer**.


Window Width: sets the distance from set point at which point 4-20mA mode will start: 4mA = 0 dosing pump pulse, 20mA = max dosing pump pulses frequency. Window width depends on many variables: distance injection point, reaction time, chemical concentration %, etc....

Overdosing time-out alarm selects a period for reaching set-point. If set point is not reached within time, controller will block outputs operations including mA outputs. Alarm is ON shown on display and will activate Alarm relay activating an alarm device.


In case of programming Max Dosing different than 0, operator can select a **Dosing check time** period (hours) in which the unit checks the total dosing time effected, example: every 3 hours unit checks the total dosing time; if the dosing time has exceeded programmed selection, it will not effect any dosing until dosing time is restored to original programming

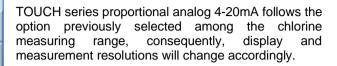


Max Dosing extra safety function ensuring dosing is carried out within selected time. Relays dosing pumps will open accordingly. This function allows no time limit (dosing continuously in accordance to selected set points) or selects minutes (up to 999) and hours, for example dosing 999 min. within 24 hours.

- Touch SET to confirm selections
- Touch **ESC** goes back one step during programming.

14.3 - 4-20mA3 CL CHLORINE PPM MEASUREMENTS METER3 > mA Device FUNCTION

4-20 mA 3


Measure Value @ 20mA

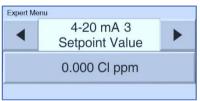
2.000 Cl ppm

Expert Menu

Proportional analog 4-20 mA outputs are combined to the unit measurements in real time of chlorine measurements thus driving remote equipment such as data logger, PLC or Chart recorders or other equipment suitable to process a remote mA signal.

F Touch **SET** to confirm selection

Select value corresponding to 4 and 20 mA according to **Setpoint 4** settings


REMINDER: Display will either show ppm or Cl ppm measurements value, according to the selection made when starting programming. If Cl ppm range was chosen and "Cl" does not appear, it means selection was not confirmed. Re-select the range, confirm OK.

- **Touch SET** to confirm selection.
- Touch **ESC** to go back one step during programming

14.3.1 - 4-20mA3 CL CHLORINE PPM MEASUREMENTS METER3 > DOSING SETPOINT

Touch **SET** to confirm selection

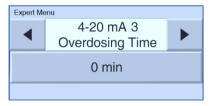
Select the setpoint value

Set point will activate output relays for dosing pumps or other equipment once selected set-point level is reached. **Default** set point **0.000 CI ppm or ppm range** = Cl 2 ppm ppm **Default** set point **0.000 CL ppm or PPM range** = 2 cl ppm (**or** ppm not default) Selecting other ranges will show **0.00** = range 20 Cl ppm **or** ppm **and** 5 Cl ppm

0.00 Total chlorine = range 20 Cl ppm

0.00 = **CLC** open chlorine cell range 10 Cl ppm

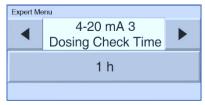
0.0 ppm = range 200 ppm


0 ppm = range 2000 ppm ALSO 20000 ppm

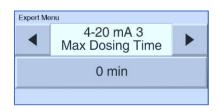
CL set point is set for **Direct mode** operation: output is active when measured value is **lower** than selected set-point, dosing pump injects **chlorine**.

Reverse mode: output is active when measured value is **higher**, dosing pump injects **chlorine reducer**.

Window Width: sets the distance from set point at which point 4-20mA mode will start: 4mA = 0 dosing pump pulse, 20mA = max dosing pump pulses frequency. Window width depends on many variables: distance injection point, reaction time, chemical concentration %, etc....



4-20 mA 3


Window Value

0.050 Cl ppm

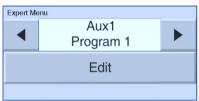
Overdosing time-out alarm selects a period for reaching set-point. If set point is not reached within time, controller will block outputs operations including mA outputs. Alarm is ON shown on display and will activate Alarm relay activating an alarm device.

In case of programming Max Dosing different than 0, operator can select a **Dosing check time** period (hours) in which the unit checks the total dosing time effected, example: every 3 hours unit checks the total dosing time; if the dosing time has exceeded programmed selection, it will not effect any dosing until dosing time is restored to original programming

Max Dosing extra safety function ensuring dosing is carried out within selected time. Relays dosing pumps will open accordingly. This function allows no time limit (dosing continuously in accordance to selected set points) or selects minutes (up to 999) and hours, for example dosing 999 min. within 24 hours.

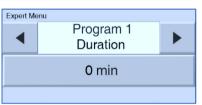
- Touch SET to confirm selections
- Touch ESC goes back one step during programming.

15.0 AUX OUTPUTS > EXPERT MENU


Four Auxiliary outputs can control various functions related to remote equipment and dosing pump including automatic Open chlorine cell cleaning and Temperature set-point. Each output can drive remote equipment or devices according to a very accurate programming of minutes/hours/days/weeks.

BENEFITS: this function make this controller a very versatile management unit not only to measure chemical-physical parameters but also for other functions related to the systems where is installed such as flocculants dosing pumps, open solenoid valves, irrigation systems, other devises connected to the main system.

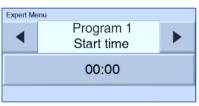
15.2 - SETTING AUX #1 - #2 - #3 > REMOTE EQUIPMENT



Remote equipment: controller controls external equipment which can be programmed according to the different selected settings according to the system requirements. **NOTE:** each AUX controls ONLY one equipment, therefore ensure that each AUX selected program have different settings.

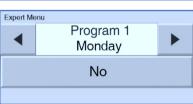
Each AUX has up to 99 Programs: AUX can control and/or drive external device and dosing pump according to a selected program

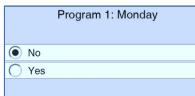
Touch **EDIT** to enter Programs selection


Program 1: duration			
1	2	3	DEL
4	5	6	CLEAR
7	8	9	ESC
	0		SET

Duration time indicates the amount of minuts Aux output relay is operative.

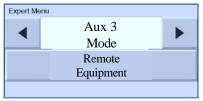
NOTE: selecting 0 (zero), the next two steps will not appear.

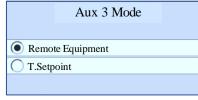

F Touch **SET** to confirm


The following steps will appear only if operator has programmed the "Duration time"

	Start Time (hh:mm)		
1	2	3	DEL
4	5	6	CLEAR
7	8	9	ESC
. 0 SET			

Start time selects the time Aux will start to be operative.

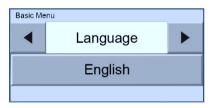




Enables the day of the week in which Aux is operative.

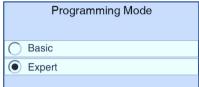
- Touch **SET** to confirm selections
- Touch **ESC** goes back one step during programming.

15.3 - SETTING AUX #3 FUNCTIONS


Aux3 can either control and/or drive external device and dosing pump external equipment or enable a Temperature Setpoint to control external temperature connected equipment

MEASURED PARAMETER TEMPERATURE > Select MANUAL/PT100 > SELECT PT10To enter TEMPERATURE SETPOINT PROGRAMMING > move into T. SETPOINT window and follow paragraph.

17.0 SETTINGS > EXPERT MENU



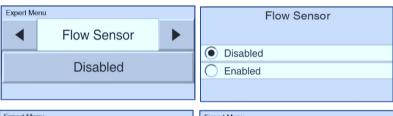
Touch the area related to **Settings**

It allows to select the programming menu language.

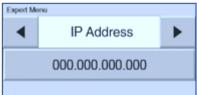
BASIC programming: simplified mode for not professional operators

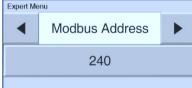
EXPERT programming: complete programming including functions for a more refined control and results.

IF USER HAS SELECTED TEMPERATURE "MANUAL" MODE, IT WILL SHOW:



☞ Touch Right arrow □


NOTE: Selecting ESC (instead of entering a temperature value) controller will set 25°C value as default, which can be changed.


Temperature value is visualised only if using temperature sensor PT100, NOT in Manual mode.

The above windows will not appear when selecting PT100 sensor mode

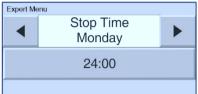
Flow sensor enabled in case no water into sensor cell holder (proximity switch will deactivate all outputs ensuring that no extra chemical is added. The Main display it will show the flow sensor icon in case there is no water in the sensor holder.

Connect to local network via IP address. Modbus address enables the unit to connect RS485. Operator can select from minimum 2 to max 240. Default is 240.

Admin password (0=disabled)			
1	2	3	DEL
4	5	6	CLEAR
7	8	9	ESC
	0		SET

FORGET IT !!!!!!!! Once enabled password when visualizing Main Display, to enter any programming and settings, unit will ask the password. Admin password will enable entering Expert Menu. In case no password is required keep it disabled.

Administrator can select **User password**: Once enabled password when visualizing Main Display, to enter any programming and settings, unit asks User password enabling **only** Basic Menu. User password only appears after selecting Admin password.



Use	User password (0=disabled)		
1	2	3	DEL
4	5	6	CLEAR
7	8	9	ESC
	0		SET

F Real time clock programs working days and time of the unit operations.

- Select day by touching Right arrow □
- Change time using keayboard appearing by touching the time value.

FACTORY SETTINGS: it restores factory default settings. To be used ONLY when parameters or measurements are not responding correctly or when user wants to ensure to re-program from zero. Not to abuse, continuous restoring can affect controller efficiency.

Touch NO to enter Factory settings selections.

Once confirmed YES, display will be OFF for 1 second than will return to starting display.

- Touch **SET** to confirm selections
- **T**ouch **ESC** goes back one step during programming.

18.0 - PH & ORP SENSORS - USE AND MAINTENANCE

Refer to the manual of the electrodes used.

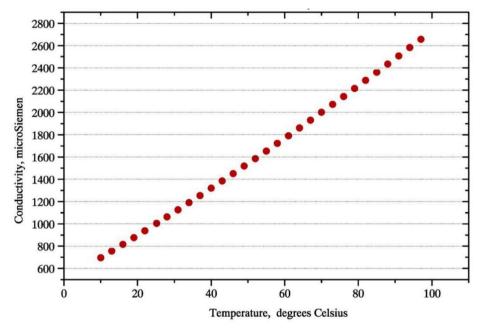
18.1 - CHLORINE PROBE - USE AND MAINTENANCE

Refer to the manual of the Chlorine probe used.

18.2- CONDUCTIVITY SENSORS NOTES

TOUCH CD works with simple conductivity 2-electrode open sensors, Graphite electrode \mathbf{OR} AISI 316 both with PTFE body. Also available with AISI 316 / PVC body.

FOR CONDUCTIVITY 4 WIRES (with internal temperature sensor) SENSORS: due to the various types on the market, in case operator wished to use such sensors, please contact ETATRON service or Local Dealer to get the right configuration for connecting to terminal board. TOUCH CD is NOT suitable for inductive sensors!


The unit automatically adjust itself for various conductivity ranges by adapting the controller to different probes cell constant "K" characteristic. Conductivity measurement are in micro Siemens features 4 K factor ranges (Cell Constant) suitable for: IMPORTANT: the above μ S ranges are just indicative, considering that, for example, a K1 probe can make good measurements below 2000 μ S, only resolution will be less accurate. However, the same concept does not apply to higher ranges.

18.3 - TEMPERATURE / CD ALFA FACTOR

CD alfa factor

CD alfa factor is the correction factor for conductivity measurement in function of temperature: EVERY CONDUCTIVITY SENSOR IS TEMPERATURE-DEPENDENT. Conductivity varies linearly according to the temperature of the solution. This coefficient normalizes the measurement of the conductivity at the reference temperature of 25° C. Alfa factor ensures best measurement results and accuracy. 2% per °C is an average found typical of many water samples with some dissolved solids. Over wide temperature spans (e.g. 0 to 100 °C) the temperature compensation factor may not remain constant,

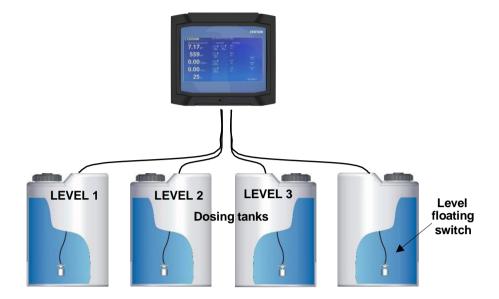
TOUCH CD automatically adjust itself for various conductivity ranges by adapting the controller to different probes cell constant "K" characteristic. Conductivity measurement are in micro Siemens features 4 K factor ranges (Cell Constant) suitable for: IMPORTANT: the above μ S ranges are just indicative, considering that, for example, a K1 probe can make good measurements below 2000 μ S, only resolution will be less accurate. However, the same concept does not apply to higher ranges.

18.4 - CONDUCTIVITY SENSORS MAINTENANCE

Sensor Storage

Short term: rinse the sensor electrodes in demineralised water; allow drying and storing dry.

Long term: rinse the sensor electrodes in demineralised water, allow to dry, cover with tip with a plastic shipping cap, store dry.


Monthly Maintenance

A monthly maintenance check is recommended by grab sample calibration since the sensor is typically installed in the process and not easy to remove. Follow the procedure under calibration by grab sample. Keep a log of the cell constant at each monthly calibration.

When to clean your sensor

Various factors can affect the physical limits on the liquid and the apparent cell constant; scale, biological growths, oils, wax, gum, etc all reduce the area for current-carrying liquid. Periodic cleaning of conductivity sensors in continuous use will remove these deposits; restore the conducting surfaces, controlled cell volume, and thus the cell constant.

19.0 LEVEL CONTROL PROBES AND DOSING TANKS INSTALLATION

20.0 TROUBLESHOOTING CONTROLLER

WARNING: ignoring safety information can endanger life or result in serious injury!

BEWARE: in presence of gas or an environment saturated with gas, ensure to disconnect the power supply of the chlorine gas dosing equipment; ensure also to secure the power supply to other equipment being part of the plant.

Before working on the unit, disconnect it from mains network

MALFUNCTION	POSSIBLE CAUSE	SOLUTION
	No power supply	a. Check electrical connections
1. Display is OFF		 b. Check if mains correspond to power supply printed instrument label.
	Burning smell	Check pcb and replace it under ETATRON authorization
2. Error NO LINK	Problem with I/O circuit board (Input/Output). Wrong alignment of the pins between circuit boards	Check the electrical display flat cable or the connecting pins alignment between measuring and I/O boards. If problem persists, contact ETATRON.
	PH / Redox levels are NOT stable	Double check levels by means of portable instrument or colorimetric kit, particularly PH level for Chlorine reference measure.
3. Display measurements do not	Chlorine levels are NOT stable	Double check levels by means of portable instrument or colorimetric kit, particularly PH level for Chlorine reference measure.
move (there are no changes)	Conductivity levels are NOT stable	Double check levels by means of portable instrument or colorimetric kit, particularly Temperature reference measure.
	Signal from sensor doesn't change	Repeat sensor calibration and if the problem remains change the probe
A Diaplay magayramanta ahanga	Electrical disturbs from electrical local network	Check the electrical local network. Check system ground connection.
 Display measurements change continuously (measuring jumps) 	Micro-Electrical disturbs into the measuring liquid	Check controller calibration, if controller measures correctly eliminate electrical disturbs and refer to below point A.
It is not possible to complete sensor calibration procedure	Buffer solution kit old or contaminated	Change buffer solution and use portable Kit
sensor campianon procedure	Sensor is defective	Check here following below hints.

IMPORTANT TESTS in the above cases 2, 3, 4, always test the unit functioning making the following steps:

- **D.** Dismount the unit from the system and mount it into another room or you own lab without connection to other equipment but directly to local network mains.
- E. Recreate into a bucket with fresh water the physical-chemical conditions as in the plant, for chlorine and pH levels.
- F. Program the unit and calibrate the sensor/s.
 - a. If results are a correct unit functioning, it means there are problems with the systems
- **b.** If problems persist, change sensor with brand new: if problem persist, the unit is defective, contact ETATRON Systems or Dealer

E Set point relay decen't close	Set-point value is incorrect	Change set-point value
5. Set-point relay doesn't close the contact	Set-point "direction" mode is incorrect	Change set-point function mode, direct or reverse, from the menu functions

KEEP IN MIND: unit with universal voltage $100 \Box 250 \text{Vac}$ ($\pm 10\%$) or $9 \Box 24 \text{Vdc}$. If the actual voltage is constantly at the limit (lower or higher), or when spikes are much higher than mentioned range, the unit pcb is electronically protected against Voltage fluctuations; outside the above-mentioned ranges, controller will not work and circuit boards must be

replaced. We **RECOMMEND** using voltage protections, checking system ground and, when connecting in parallel other units, using remote contact switch. A plant not built according to correct electrical rules, without a ground system, with frequent ON/OFF operations, could directly affect the circuit boards. It is also suggested installing a UPS (Uninterruptible Power Supply) to ensure power continuity. A discontinuous voltage along with many On/Off operations, could affect the pcb's integrity and Data loss.

TROUBLESHOOTING HINTS FOR CONDUCTIVITY SENSOR

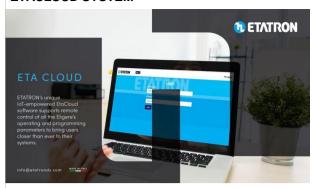
Slow Response typically due to excessive sample line length and low flow, thus producing long sample transport lags. Resolve by adding a fast-flow loop with the sensor in a short side stream, or by shortening the line. Slow response can also be caused by a build-up of dirt in the sample line. In this case the problem may be alleviated by changing the take-off point or by installing a knock-out pot.

Readings consistently low or spike low characteristic of bubbles in the sample line passing through the sensor or hanging up in the sensor.

Readings gradually falling the controller can no longer be calibrated properly. This problem is typical of scale or sludge/slime deposits in the sensor. The sensor may need cleaning.

Readings at maximum under all conditions. First verify that controller is displaying conductivity using Conductivity portable controller.

21.0 CONTROLLER TECHNICAL	. CHARACTERISTICS		
	• 0 pH 14 pH (0 100 °C)		
	Resolution □ 0.01 pH		
	 Input resistance > 10¹² Ohm 		
Measuring range PH:	■ Zero: 10% adjustment range from calibration point		
	Gain calibration: □ 15% electrode adjustment gain		
	Hysteresis: 0.05 pH (programmable)		
	 PWM / timed pulses activating point: 1.50 pH or 150mV (programmable) 		
	■ range – 1500 mV+1500 mV		
	• Input resistance > 10 ¹² Ohm		
Measuring range RX (ORP):	Resolution □ 1 mV Accuracy 0.5% of input range		
ivieasuming range IXA (OIXF).	• Input resistance > 10 ¹² Ohm		
	Hysteresis: 10 mV (programmable)		
	 PWM / timed pulses activating point: 150 mV (programmable) 		
	Dynamic measuring range input ± 2500 mV (it reaches ± 2995 mV)		
Measuring range Chlorine range ppm	• 0÷2 ppm=Resolution 0.001 Hysteresis=0.005 PWM point=0.050 pp	om	
(free or total) or PPM, Membrane type	• 0÷5/10/20 ppm=Resolution 0.01 Hysteresis= 0.05 PWM point=0.50 ppm	n	
sensor:	• 0÷200 ppm=Resolution 0.1 ppm Hysteresis= 0.5 PWM point=5 ppm		
	• 0÷2000 ppm=Resolution 1 ppm Hysteresis= 5 PWM point=50 ppm		
Measuring range Chlorine range ppm	0÷10 ppm (Open type sensor or cell) / Resolution 0.10 ppm		
(free), Amperometric Open Cell type:	range 0÷10 ppm = Hysteresis / PWM point = 0.50 ppm		
	• K 1 ranges up to 20.00 mS / Hysteresis / PWM point = 500 μS		
	Resolution 10 µS		
Conductivity CD Measuring range and K	 K 5 ranges up to 2.000 μS / Hysteresis / PWM point = 50 μS Resolution 1 μS 		
factor (cell constant):	• K10 ranges up to 200 μ S / Hysteresis / PWM point = 0,50 μ S Resolution 0,1 μ S		
	 K 0.6 / K 0.8 ranges up to 50.00 mS / Hysteresis / PWM point = 5000 μS Resolution 1000 μS (only with graphite sensor electrodes) 		
	(5) 3		
Temperature setting:	Manual or automatic compensation (latter combined temperature probe PT100))	
	• Resolution 0.1% °C • Accuracy: ± 0.5% °C		
Temperature probe range:	− 20100°C		
	 Resolution 0.1% °C Accuracy: ± 0.5% °C 		


Universal power supply 100

□ 250 Vac / 5W at 240 Vac

Power supply:

		Upon request power supply 9□36 Vdc / 9□24 Vac
Microproc	essor technology:	SMD components mounting, digital controls keypad 6 key
Linearity, Stability Reproducibility:		□ 0.5 % under standard conditions
Display:		back-lit TOUCH SCREEN display 7"
Delay on	Set-point:	Delay time relay activation, programmable for each set-point (999 sec.)
Start-up D		Delay time relay when switching ON the unit, programmable
•	nsumption = Nominal current:	230Vac 9,8W 45mA • 24Vac-dc 9,8W 408mA • 12Vdc 9,8W 816mA
	lectrical protection:	power supplier guarantees electrical protection (instead of fuse)
Level / Re	emote relay control	Chemical additive level (level switch not included) output voltage +5Vdc
	Output RELAY A (set-point 1):	PH or RX (Orp) ON-OFF/PWM mode voltage free contact, relay 5Amax 230Vac
	Output RELAY B (set-point 2):	PH or RX (Orp) ON-OFF/PWM mode voltage free contact, relay 5Amax 230Vac
	Output RELAY C (set-point 3):	RX (Orp) or PH ON-OFF/PWM mode voltage free contact, relay 5Amax 230Vac
.	Output RELAY D (set-point 3):	CL chlorine or PPM ON-OFF/PWM mode voltage free contact, relay 5Amax 230Vac
Outputs:	Output RELAY E (set-point 3):	CD (conductivity) ON-OFF/PWM mode voltage free contact, relay 5Amax 230Vac
	Output RELAY F (AUX1):	AUXILIARY ON-OFF remote equipment or cleaning cell free contact 5Amax 230Vac
	Output RELAY G (AUX2):	AUXILIARY ON-OFF remote equipment free contact 5Amax 230Vac
	Output RELAY H (AUX3):	AUX ON-OFF for remote equipment via Timer or enabling Temperature Set point
	Output RELAY I (ALARM):	ALARM contact voltage free 5Amax 230Vac
	FLUX sensor (proximity switch):	It blocks output operations in case of no flow into the sensor cell
	,	Adjustable (500 max input impedance), with galvanic separation.
	0/420 mA1 output:	Related to PH or RX measuring settings.
	0/420 mA2 output:	Adjustable (500 \square max input impedance), with galvanic separation.
Outputs:	0/420 HIAZ Gatpat.	Related to RX or PH measuring settings.
	0/420 mA3 output:	Adjustable (500 □ max input impedance), with galvanic separation. Related to CL chlorine or PPM measurement settings.
	0/420 mA4 output:	Adjustable (500 □ max input impedance), with galvanic separation. Related to CD (conductivity) measurement settings.
	Signal for chlorine sensor	1W a 12V = 80mA, available for sensor running aprox. 50mA (membrane type)
	Unit load:	Resistive load 5A at 230Vac / Inductive load 0.5A at 230Vac
Outputs:	Insulation voltage relay output:	> 3000Vac
	Relay contact lifespan:	□ 5x10 ⁴ switching operations (5A at 230Vac)
		,
Unit Work	ing temperature:	Ideal working temperature 5°C÷40°C, withstand 0°C÷45°C
Environm	ental Conditions:	Possibly dry environment, altitude up to 2000m, Relative humidity 80% for temperatures up to 31°C decreasing linearly to 50% relative humidity at 40°C. Pollution degree 2.
Noise Lev	rel:	Irrelevant
Transport	and storage conditions:	-5□60°C possibly dry environment
		EtaCloud software
- 4	20 405 W.E.	
Ethernet/RS485-WiFi:		ETHERNET / RS485 connection INTERNAL module + micro SD memory card 16 GB
		Ethernet connection by RJ45 IP68 connector or WiFi
		Data Logger via Etatron software "EtaCloud®"
		"ETACLOUD" for remote control via the "Internet" through ETATRON server
UPON REQUEST:		Data Logger via ETATRON software "EtaCloud"
		RS485/USB cable (to connect unit to a pc via RS485 protocol or WiFi) also capable to connect to PLC by a RS485/USB adaptor (upon request Etatron provides registers protocol to use with third party software)

ETACLOUD SYSTEM

Etatron features a useful service which will allow the customers to monitor and control from anywhere in the world the controllers installed in any place in the world: ETACLOUD SYSTEM. This platform, installed in Etatron own server, will enable the user in charge with servicing the plant, to remote control and monitor Etatron

instrument operations: the user, in possess of the controller authentication certificate, will create a free internet account in Etatron server: user will access its own personal area. The platform will show a geographical map (which can be zoomed at like) pointing out all the registered controllers the user has installed in the area; once identified the controller to monitor, the user will log in the controller software allowing the visualization of the current measurements and have the possibility to modify all the main parameters.

ETACLOUD SYSTEM is available for those controller that feature RS485 Modbus protocol, Ethernet connection, internal connection and Etacloud® software.